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Abstract 

 

An emerging use of GPS is to provide accurate navigation information for 

satellites in orbit.  The GPS satellites are designed to provide service to terrestrial users, 

so the antenna array points directly towards the Earth and uses a narrow primary 

beamwidth.  Because GEO altitudes are well above the GPS constellation, the Earth 

occludes most of the GPS signals to the satellite.  Decreased satellite visibility is 

debilitating, as GPS navigation requires at least four visible satellites to determine 

position.  To assist with the visibility problem, the receiver can look at the GPS satellite 

transmit antenna side lobes, but this does not entirely solve the navigation problem.  GPS 

measurements are inherently bound by receiver clock errors. The clock error must be 

known or estimated in order to obtain meaningful ranging information.  To obtain three-

dimensional positioning, at least four satellites must be tracked to solve for three 

dimensions of position plus the receiver clock error. 

A new method for improving geostationary navigation accuracy using GPS is to 

correct the time error by including Two-Way Time Transfer (TWTT) measurements.  

TWTT is a technique in which signals are simultaneously exchanged between two clocks, 

and is one of the most accurate methods of comparing clocks. By effectively removing 

the clock error between the GPS satellite and the GPS receiver, TWTT allows meaningful 

information to be gathered when less than four GPS satellites are available.  The results 

show a 21-38% improvement in the 3-D RMS position accuracy while using TWTT 

between the GEO satellite and an atomic clock on the ground.  There was a 60-70% 

improvement when the clock on the ground was synchronized to GPS time. 
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USE OF TWO-WAY TIME TRANSFER MEASUREMENTS TO IMPROVE 

GEOSTATIONARY SATELLITE NAVIGATION 

1 Introduction 

 

1.1 Overview 

The Global Positioning System (GPS) was developed by the United States 

Department of Defense to provide precise position, velocity, and time measurements to 

military users around the globe.  Such information would provide U.S. military forces an 

unparalleled advantage among adversaries, allowing accurate navigation in any weather 

conditions during day or night operations.  Upon initial operational capability on 

December 8, 1991 [17], civilian use of the GPS signal was intentionally corrupted with 

random error, allowing only the military users to have precise navigation.  On May 2, 

2000, the full accuracy of civilian GPS was made freely available to users of every nation 

[16].  Its role in daily life has broadened at a rapid rate, and now much of modern 

infrastructure is dependent upon GPS.  Because of the growing reliance on GPS, users 

demand increased precision from the system. 

An emerging use of GPS is to provide accurate navigation information for 

satellites in orbit.  Previously, radar and optical range measurements to the satellite from 

the ground were collected, allowing operators to determine the position of the satellite.  

With GPS, the satellite can carry a receiver and calculate its own position using the GPS 

signals, eliminating the numerous ground stations and support costs.  Additionally, GPS 

navigation allows the satellite to operate with a certain level of autonomy in station-

keeping, making orbital corrections without the need for ground interaction.  GPS 
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navigation is effective for satellites in Low Earth Orbit (LEO), but satellites operating in 

Geosynchronous Orbit (GEO) or Highly Elliptical Orbit (HEO) experience extreme 

performance degradation, for reasons described below. 

GPS measurements are inherently bound by receiver clock errors. The clock error 

must be known or estimated in order to obtain meaningful ranging information.  To 

obtain three-dimensional positioning, at least four satellites must be tracked to solve for 

three dimensions of position plus the receiver clock error.  Because the receiver clock 

error can be estimated with four measurements, a user can have a very poor local clock 

attached to their receiver and still have accurate positioning. 

The GPS satellites (approximately 20,200 kilometers altitude) are designed to 

provide service to terrestrial users, so the antenna array points directly towards the Earth 

and uses a narrow primary beamwidth.  Because GEO (approximately 35,000 kilometers 

altitude) and HEO altitudes are well above the GPS constellation, the Earth occludes 

most of the GPS signals to the satellite.  Decreased satellite visibility can be debilitating, 

as GPS navigation requires at least four visible satellites to determine position. 

As a solution to the visibility problem, the receiver can look at more than just the 

primary GPS transmit beam that is intended for terrestrial use.  The GPS transmit 

antennas have side lobes, shown in Figure 1.1, though at much lower power levels than 

the primary beam. These side lobes provide increased visibility for GEO and HEO 

satellites and are a requirement for high-altitude navigation. 
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Figure 1.1: GPS Signal Reception at GEO and HEO Orbital Altitudes [1] 

 

A current method for GPS navigation in high-altitude orbits is to use high-

sensitivity GPS receivers and more powerful signal acquisition engines [1].  By 

increasing the sensitivity of the receiver, the very weak GPS signals become usable and 

the number of visible satellites increases, allowing for more precise positioning. 

A new method for improving geostationary navigation accuracy using GPS is to 

correct the time error by including Two-Way Time Transfer measurements.  Two-Way 

Time Transfer (TWTT) is a technique in which signals are simultaneously exchanged 

between two clocks.  If the distance between the two clocks is equal, such as static 

clocks, the propagation delays cancel and the difference between the two clocks can be 

precisely measured [13].  Dynamic TWTT allows simultaneous signal exchanges to occur 
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between moving clocks, allowing vehicles, such as airplanes or satellites, to take 

advantage of TWTT [2].  TWTT is one of the most accurate methods of comparing 

clocks, so it can be used to create more accurate positioning using GPS by effectively 

removing the clock error between the GPS satellite and the GPS receiver.  Using TWTT 

measurements, the clock error could be resolved, allowing less than four visible GPS 

satellites to provide meaningful ranging information. 

 

1.2 Related Research 

1.2.1 GPS Measurements Collected from Geosynchronous Transfer Orbit 

A group of students at the United States Air Force Academy designed and 

constructed the “Falcon Gold” experiment that flew in 1997.  The goal of this project was 

to measure GPS signals at high orbital altitudes using low-cost, low-power, off-the-shelf 

components [19].  The purpose was to test concepts, not to collect high-quality data. 

The Falcon Gold experiment was a secondary payload on a DSCS spacecraft 

launch and was attached the side of the Centaur upper stage.  Once the DSCS spacecraft 

separated from the upper stage and maneuvered into a geosynchronous orbit, the upper 

stage continued to orbit in a geosynchronous transfer orbit (GTO).  The GTO orbit 

apogee and perigee were 35,200 and 200 kilometers, respectively, allowing the Falcon 

Gold to collect measurement data above and below the GPS constellation. 

The experiment used an inexpensive two-inch patch antenna for the GPS receiver, 

which was modeled and used in this research simulation.  Because of the hardware setup 

and limited ground link ability, only intermittent data could be collected.  A total of 12 

data frames were collected, detecting 25 PRN signals, as seen in Figure 1.2. 
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Figure 1.2: Falcon Gold GPS Signal Detection Locations [19] 

The Falcon Gold experiment is one of the first examples of GPS signal detection 

at altitudes above the GPS constellation [19].  The future quality of performance can only 

improve, since Falcon Gold was able to achieve these capabilities by using only low-cost, 

low-power hardware.  This demonstration was an important step in the progression of 

GPS-enabled satellites in high-altitude orbits. 

The Falcon Gold experiment was also able to detect GPS sidelobe signals.  This is 

very important for applications that could benefit from the extended coverage offered by 

sidelobe signals, such as high-altitude GPS positioning.  New concepts may now be fully 

explored without hesitation, since the physical act of detecting sidelobes signals has been 

proven through experimentation. 

1.2.2 High-Sensitivity GPS Receivers Built for GEO Operation 

The National Aeronautics and Space Administration (NASA) developed a highly 

sensitive GPS receiver for use in geosynchronous orbits that is designed to track the very 
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weak GPS sidelobe signals [1].  This new receiver, called the Navigator, will drastically 

reduce GPS signal outages, providing more accurate positioning.  The Navigator is able 

to track weak signals that are not usable by a standard GPS receiver, as seen in Figure 

1.3.  The lower dashed line represents the sensitivity threshold of the Navigator, while the 

upper dashed line represents a standard space receiver. 

 
Figure 1.3: Simulated Received Power at GEO Orbital Altitude [1] 

The Navigator is designed to provide autonomous navigation for spacecraft and 

includes the GPS Enhanced Onboard Navigation Systems (GEONS) software.  GEONS 

is a powerful extended Kalman filter that uses an internal orbital dynamics model in 

conjunction with incoming measurements to generate a position solution, even when less 

than four GPS satellites are visible [1].  The GEONS orbital dynamics model is 

extremely sophisticated and can emulate a complex Earth gravity field and the forces due 

to solar and lunar gravity, atmospheric drag, and solar-radiation pressure.  The Navigator 
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receiver feeds measurements to the GEONS, which is able to calculate precise GEO 

orbits to within 10 meters 3D root mean square as seen in Table 1.1. 

Table 1.1: GEONS State Estimation Error Statistics [1] 

 

The research conducted in this thesis is similar to the concept of the Navigator, 

which supplements pseudorange measurements with additional data to produce a more 

accurate navigation solution.  Instead of a high-fidelity orbital mechanics model, this 

research uses TWTT to improve the GPS accuracy at high altitudes.  The Navigator 

requires specialized hardware and the GEONS software, while TWTT measurements 

could be used with a very simple GPS receiver and low-quality onboard clock. 

The Navigator simulation uses slightly different values for the noise density and 

the gain patterns of the associated antennas, so a direct “apples-to-apples” comparison is 

not possible for this thesis research.  However, the close similarity offers a good 

benchmark for validating the simulation used in this thesis. 

1.2.3 New GPS Satellite Architecture for High-Altitude Spacecraft 

The Aerospace Corporation conducted a study in 1998 to examine the effects of 

various GPS satellite architectures and user processing options on the accuracy of high 

altitude orbit determination using GPS [20].  The study was divided into two main 

investigations to examine the tradeoff between GPS system modifications and user 
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equipment complexity. It includes several hypothetical GPS satellite antenna 

configurations and receiver clock choices. 

Five antenna architectures were used in Monte Carlo simulations:  the Block II-A 

main beam (42˚), the Block II-R main beam (38˚), the Block II-R UHF crosslink antenna 

(120˚), and a hemispherical back-side antenna combined with either the II-A or II-R main 

beam.  The three receiver clock choices were a standard crystal, an improved crystal, and 

a standard atomic clock. 

 
Figure 1.4: Block II-R UHF Crosslink Antenna [20] 

The simulations did show that GPS modifications would improve positioning 

accuracy at GEO by increasing signal availability, but would require a significant 

increase in cost and complexity.  Therefore, a complete redesign of the GPS satellites to 

assist GEO navigation is highly improbable. 
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Figure 1.5: Block II-R with Hemispherical Back-side Antenna [20] 

The most important result from this study concerns the choice of receiver clock.  

By using a clock with greater accuracy, the positioning error decreases significantly as 

seen in Table 1.2.  Such a concept is the crux of this thesis research, purporting that 

introducing a more accurate clock via TWTT can significantly improve GEO positioning 

using GPS. 

Table 1.2: RMS Position Errors – GPS Broadcast Antenna Configuration vs User Clock Quality [20] 

 
II-R Main (38˚) 

Only 
II-A Main (42˚) 

Only 
UHF Crosslink 

(120˚) 
II-R Main (38˚) 

+ Backside 
II-A Main (42˚) 

+ Backside 

3D 16.9 m 3D 15.3 m 3D 3.6 m 3D 4.5 m 3D 4.5 m 

R 6.3 m R 6.0 m R 2.4 m R 2.7 m R 2.7 m 

I 15.4 m I 13.9 m I 2.5 m I 3.4 m I 3.5 m 

Standard 
Crystal 

C 3.3 m C 2.1 m C 1.0 m C 1.0 m C 1.0 m 

3D 11.8 m 3D 11.0 m 3D 3.5 m 3D 4.4 m 3D 4.4 m 

R 4.6 m R 4.4 m R 2.3 m R 2.7 m R 2.6 m 

I 10.7 m I 9.8 m I 2.5 m I 3.4 m I 3.5 m 

Improved 
Crystal 

C 2.0 m C 2.1 m C 1.0 m C 1.0 m C 0.9 m 

3D 8.4 m 3D 8.1 m 3D 2.8 m 3D 3.4 m 3D 3.4 m 

R 2.4 m R 2.3 m R 1.4 m R 1.7 m R 1.7 m 

I 7.8 m I 7.6 m I 2.1 m I 2.8 m I 2.8 m 

Atomic 
Clock 

C 1.7 m C 1.6 m C 1.0 m C 0.9 m C 0.9 m 
   R = radial, I = in-track, C = cross-track 
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1.2.4 Two-Way Time Transfer Measurements used in Relative GPS Positioning 

A previous AFIT masters degree student researched the effects of TWTT on 

networked differential GPS positioning [8].  Differential GPS techniques provide relative 

positioning between a mobile GPS receiver and a fixed receiver with well-known 

position information, as shown in Figure 1.6.  The fixed receiver compares its GPS-

calculated position with its known geographic position and determines the corrections 

necessary for eliminating the difference between the two.  These corrections can then be 

sent to a mobile receiver, providing the same amount of positioning accuracy as the 

known location.  In a networked system, multiple receivers exist in various locations, 

such as a swarm of Unmanned Aerial Vehicles (UAVs), and are linked to the same fixed 

reference station.  Differential GPS accuracy is on the order of centimeters to meters, 

depending upon the method used [21]. 

 
Figure 1.6: Real-Time Differential GPS Diagram [10] 

This previous research, found in [8], used a MATLAB® simulation to explore the 

effects of introducing TWTT measurements to a network of six mobile receivers.  The 

TWTT measurement accuracy standard deviation varied between 3, 0.3, 0.03, and 0.003 

meters.  Smaller TWTT measurement error results in greater position measurement 
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accuracy as seen in Table 1.3, which was created using the data produced in [8].  Clearly, 

there is a significant benefit to using TWTT measurements with GPS positioning. 

Table 1.3: Position Accuracy Improvement When Using TWTT 

Scenario 3-D Position RMS 
Value (m) 

Percent Increase 
in Accuracy 

ρ 1.587   
ρ+TWTT(3m) 1.415 10.84% 
ρ+TWTT(0.3m) 0.935 41.08% 
ρ+TWTT(0.03m) 0.890 43.92% 
ρ+TWTT(0.003m) 0.889 43.98% 

ρ = pseudorange measurement 
TWTT(x) = TWTT measurement where x = accuracy level 

The methodology found in [8] is similar to the research conducted for this thesis.  

The main difference is that this research examines TWTT measurements used with GPS 

positioning of geostationary satellites, versus a network of receivers on Earth.  Both 

simulations use similar assumptions, such as ignoring relativistic effects and other types 

of error that can be modeled, calculated, and removed from physical measurements.  The 

glaring similarity is the idea that TWTT can drastically improve GPS positioning 

accuracy. 

 

1.3 Problem Statement 

The main objective of this research is to examine the impact of adding TWTT 

measurements to geostationary satellite positioning using GPS measurements.  By 

constraining relative clock errors, TWTT measurements can improve the positioning 

accuracy. 

By using TWTT measurements, a GPS receiver in geostationary orbit could 

possibly calculate a good navigation solution without needing a high-sensitivity receiver.  

If the satellite did have a high-sensitivity receiver, the navigation solution would be even 
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better.  TWTT measurements would eliminate the need for a precise clock on the satellite 

because it would only need a precise reference clock on the ground.  Essentially, using 

TWTT with a highly accurate clock on the ground and a low quality clock on the satellite 

would be comparable to putting a highly accurate clock on the satellite itself.  A highly 

accurate clock enables the system to meaningfully use individual pseudorange 

measurements, because the clock error can be accurately modeled over time. 

This research involves five trade studies that quantify the benefits of using TWTT 

measurements with GPS.  The first trade study involves using ephemeris data from 

several days to ensure that the results are not dependent upon the day that is used.  The 

second trade study examines the differences between a simple GPS receiver model and a 

complex GPS receiver model to determine the effect of simulation model accuracy.  The 

simple GPS receiver model uses a simple cut-off angle between the satellites and the 

Earth and a constant pseudorange measurement noise value.  The complex GPS receiver 

model uses gain patterns for the GPS and geostationary satellite antennas and a varying 

pseudorange measurement noise that depends on received signal strength.  The third trade 

study examines the differences between a rudimentary gain pattern and a more accurate 

gain pattern for the GPS satellite antenna to determine the effect of gain pattern accuracy 

levels.  The fourth trade study investigates the effects of using different types of clocks 

for the geostationary satellite clock and the TWTT reference clock to determine the effect 

of using a high-accuracy clock versus a low-accuracy clock.  The fifth trade study 

evaluates the results as a function of TWTT measurement accuracy. 
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1.4 Methodology 

A simulation using MATLAB® examines the potential benefits of using TWTT 

measurements in addition to GPS measurements for determining the position of a 

geostationary satellite in orbit.  The simulation is comprised of five main functions, 

shown in Figure 1.7, which involve loading parameters, generating truth data, generating 

measurement data, executing a Kalman filter, and analyzing the results. 

 
Figure 1.7: Simulation Block Diagram 

 

The load_params function allows the user to input the desired parameters into the 

simulation.  These parameters are used by the generate_truth, generate_meas, and 

kalman functions.  The generate_truth function generates the ‘true’ values for the 

positions of each GPS satellite and the position of the geostationary satellite.  The 

generate_meas function uses the ‘true’ data to calculate pseudorange measurements and 

the TWTT measurements, simulating what an actual GPS receiver would collect.  The 

kalman function uses the generated measurements in a Kalman filter to estimate the 

position of the geostationary satellite.  The analyze_results function compares the ‘true’ 

data with the Kalman filter results to determine how accurately the filter was able to 
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position the geostationary satellite using the measurements provide by generate_meas.  A 

more detailed description of each function is located in Chapter Three. 

 

1.5 Thesis Overview 

Chapter Two describes the fundamental topics that are related to this research. 

This chapter includes backgrounds of GPS, orbital reference frames, Two-Way Time 

Transfer, and the Kalman filter.  The topic of GPS includes an overview of pseudorange 

measurements and associated equations, while the topic of TWTT includes an overview 

of static and dynamic methods and associated equations.  The topic of orbital reference 

frames describes the Earth-Centered Earth-Fixed (ECEF) and Earth-Centered Inertial 

(ECI) coordinate systems.   

Chapter Three describes a simulation of positioning a geostationary satellite in 

orbit using simulated GPS measurements with and without TWTT measurements.  Using 

the simulation, five trade studies were conducted to examine the impact on system 

performance.  The trade studies include comparing the results obtained from using 

ephemeris data from different days, the differences between a simple and complex GPS 

receiver model, the differences between simple and complex gain pattern data, the 

differences between using high- and low-accuracy clocks for the geostationary and 

TWTT reference clocks, and the differences in adjusting the TWTT measurement noise 

error. 

Chapter Four discusses the results of each trade study and provides an analysis of 

each trade study. Chapter Five explains conclusions and recommendations for further 

research. 
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2 Background 

 

2.1 Introduction 

This chapter describes the fundamental topics that became the building blocks of 

this research.  There is a brief overview of GPS along with an explanation of system 

architecture and pseudorange measurements.  This chapter describes the applicable 

reference frame coordinate systems, explains the theory and mechanics of Two-Way 

Time Transfer, and demonstrates the method of using a Kalman filter. 

 

2.2 GPS Overview 

The following sections will describe the GPS architecture, including the 

Operational Control Segment (OCS), the space segment, and the user segment as shown 

in Figure 2.1.  The next section will describe how the system produces navigation 

information via pseudorange measurements.  This section closely follows the descriptions 

given in [8] and [25]. 

2.2.1 Operational Control Segment (OCS) 

The OCS is comprised of the Master Control Station (MCS), monitor stations, 

and ground antennas.  The MCS provides the command and control for the entire GPS 

system and tracks GPS satellite orbits, monitors and sustains GPS satellite health, and 

maintains GPS time [16].  Operated by the MCS, the monitor stations are spread across 

the Earth and constantly observe GPS satellite signals.  Monitor stations have a GPS 

receiver, an atomic clock, meteorological equipment, and communications hardware for 
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transmitting measurement data back to the MCS [16].  The ground antennas reside with a 

monitor station and communicate with the GPS satellites.  Operated by the MCS, the 

ground antennas are responsible for transmitting commands and other messages to the 

satellites and for receiving telemetry and system health from the satellites [16]. 

 

 
Figure 2.1: Major Segments of the GPS System [15] 

 

2.2.2 Space Segment 

The nominal GPS constellation consists of 24 satellites placed into six orbital 

planes at an altitude of 20,200 kilometers.  Each orbital plane has an inclination of 55 
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degrees and holds four satellites.  The orbital planes are labeled A through F, as seen in 

Figure 2.2. 

 
Figure 2.2: The GPS Satellite Constellation [12] 

 

The responsibilities of the OCS include creating an ephemeris for each satellite, 

which is a compiled set of state vectors for each satellite predicted over time [23].  

Ephemeris values describe the shape of the satellite’s orbit, and can be used to calculate 

the satellite’s position and velocity.  A Kalman filter calculates ephemeris values by 

propagating the GPS satellites’ positions and velocities forward in time.  The final result 

is called the broadcast ephemeris.  All satellites in the GPS constellation transmit the 

broadcast ephemeris data for each satellite, allowing a user to know the position of each 

GPS satellite. 

A precise ephemeris data set is compiled roughly two weeks after the actual orbit 

by a private conglomeration of users.  Technically it is not a true ephemeris, but rather a 

historical collection of observables.  It includes measurement data from hundreds of 

ground stations and accounts for ionospheric, tropospheric, and many other errors.  The 
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broadcast ephemeris is a prediction, while the precise ephemeris is compiled using past 

measurements.  The precise ephemeris is extremely accurate, though post-dated, and is 

considered to be the true position of the GPS satellite.  Precise ephemeris data used in 

this simulation comes from the International GPS Service (IGS). 

Each GPS satellite broadcasts a global navigational message on two L-band 

frequencies, L1 (1575.42 Hz) and L2 (1227.60 Hz) [18].  The navigational message is 

unique to each satellite, modulated on a pseudo-random noise (PRN) signal.  It provides 

satellite positions and satellite clock corrections for use in computing the user’s 

navigation solution, to include position, velocity, and time. 

2.2.3 User Segment 

The GPS signal is globally available for use by any receiver.  A typical GPS 

receiver must have seven components in order to correctly acquire and track the GPS 

signal [18].  It must have: 

• an omnidirectional antenna to receive the encoded signals transmitted by 

the GPS satellites 

• a filter to remove interfering signals 

• an amplifier to boost the GPS signal 

• a delay lock loop receiver and demodulator to provide estimates of the 

pseudorange, carrier phase, and navigational data for each satellite 

• a navigation data processor to calculate the position of each satellite based 

on the navigation data. 

• an algorithm to estimate the user position and velocity state vector 
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• a reference oscillator to provide a time and frequency reference for the 

receiver. 

2.2.4 Pseudorange Measurements 

Two pseudorandom noise (PRN) codes, the Coarse-Acquisition (C/A) code and 

the Precision (P(Y)) code, are modulated onto the L1 and L1/L2 bands respectively [23].  

Each PRN code is unique for a given satellite.  To make a GPS measurement, the PRN 

signal transmit time between the GPS satellite and the user must be determined.  To do 

this, the user’s receiver compares an internal copy of the PRN code with the PRN signal 

received from the satellite.  By calculating the time shift required to align the two PRN 

codes and multiplying by the speed of light, the user can determine the pseudorange 

between the receiver and the GPS satellite. 

Because the true range from the receiver to the satellite is corrupted by receiver 

clock errors, it is called a pseudorange.  A pseudorange measurement (ρ) can be 

expressed as: 

2 2 2( ) ( ) ( )sat sat sat sat
rec rec rec rec PRx x y y z z c t c tρ δ δ υ= − + − + − + − +      (2.1) 

where 
  , ,sat sat satx y z = true ECEF position of the satellite (meters) 
  , ,rec rec recx y z = true ECEF position of the receiver (meters) 
  rectδ = receiver clock bias (seconds) 
  sattδ = satellite clock bias (seconds) 
  PRυ = pseudorange error (meters) 
  c = speed of light (2.99792458 x 108 meters/second) 
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Figure 2.3 displays the concept of a pseudorange measurement.  At least four 

satellites are needed to simultaneously estimate the receiver’s position and clock error (x, 

y, z, δtrec).  In Figure 2.3, the b term is equal to sat
rec PRc t c tδ δ υ− + − , as described above. 

 
Figure 2.3: Illustration of Pseudorange Measurement [16] 

 

2.3 Reference Coordinate Systems 

All motion in the universe is relative, so there are many different ways to express 

the reference frame that describes an object’s orbital motion around the Earth.  Each 

reference frame has advantages for particular circumstances, so this research utilizes two 

reference frames:  Earth-Centered Inertial (ECI) and Earth-Centered Earth-Fixed (ECEF).  

Both the ECI and ECEF reference frames are Cartesian (orthogonal) coordinate systems.  

This section closely follows the descriptions given in [25]. 
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2.3.1 ECI Reference Frame 

The Earth-Centered Inertial coordinate system is typically used when describing 

the motion of an object orbiting the Earth, as it is an inertial frame and is not concerned 

with the rotation of the Earth.  For ECI, the origin is located at the center of the Earth 

with the X̂ axis pointing toward the vernal equinox, also called the First Point of Aries, in 

the equatorial plane.  The Ẑ axis points through the North Pole along the Earth’s axis of 

rotation, and the Ŷ axis points ninety degrees from the X̂ axis in the equatorial plane, 

following the right-hand rule.  The ˆ ˆ ˆ, ,X Y Z axes are often referred to as ˆ ˆ ˆ, ,I J K , as seen in 

Figure 2.4.  Since the X̂ axis direction is fixed in space, the ECI coordinate system does 

not change as the Earth spins about its axis and revolves around the sun. 

 

 
Figure 2.4: The ECI Coordinate System [23] 
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2.3.2 ECEF Reference Frame 

The Earth-Centered Earth-Fixed coordinate system is typically used for Earth-

based satellite tracking operations where the satellite’s coordinates need to be expressed 

in relation to a geographic location on the surface of the Earth.  Unlike the ECI reference 

frame, the ECEF reference frame is always aligned with a particular longitude, normally 

the Prime Meridian at Greenwich, and thus rotates with the Earth.  The origin is still 

located at the center of the Earth, and the Ẑ axis still points through the North Pole along 

the axis of rotation, while the X̂ axis points toward a designated longitude and rotates 

with the Earth.  The Ŷ axis always points ninety degrees from the X̂ axis.  Figure 2.5 

portrays the ECEF coordinate system. 

 
Figure 2.5: The ECEF Coordinate System 

 

The ECEF coordinate system proves useful when examining geostationary orbits, 

since a geostationary orbit rotates at the same rate as the Earth.  If a satellite were situated 

in a perfectly geostationary orbit, the satellite’s ˆ ˆ ˆ, ,X Y Z coordinates would remain 
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constant.  Because this research examines the errors in the navigation solution of a 

geostationary satellite, the results will be presented in the ECEF coordinate system, 

making them more intuitive to interpret. 

 

2.4 Two-Way Time Transfer Overview 

Two-Way Time Transfer (TWTT) is a technique in which signals are 

simultaneously exchanged between two users to measure their relative clock offsets.  If 

the paths between the two users are reciprocal, the delays cancel and the difference 

between the two clocks is half the difference in time interval counter readings [13].  

Figure 2.6 explains the TWTT technique in more detail using a simplified setup with two 

clocks connected via two cables. 

 

 
Figure 2.6: Two-Way Time Transfer Technique [13] 

In Figure 2.6, 
A = Time Interval Counter measurement from Clock A 
B = Time Interval Counter measurement from Clock B 
dAB = delay caused in cable from Clock A to Clock B 
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dBA = delay caused in cable from Clock B to Clock A 
R(A) = difference between Clock A and Clock B with cable delay dBA 
R(B) = difference between Clock B and Clock A with cable delay dAB 

 

There are two types of TWTT, those being static and dynamic. Static TWTT uses 

two or more transceivers whose positions are held constant during the transmission and 

reception of the measurement signals.  Dynamic TWTT is a more recent development 

that allows one or more of the transceivers to be moving [2].  This section closely follows 

the descriptions given in [8] and [25]. 

2.4.1 Static TWTT 

TWTT commonly involves two static clocks on the Earth’s surface that use a 

geostationary satellite to relay signals between them.  The connection between the two 

clocks proceeds through an antenna, a transmitter, an uplink to the satellite, a route 

through the satellite, a downlink from the satellite, an antenna, and a receiver [13].  This 

arrangement is depicted in Figure 2.7. 

 
Figure 2.7: Static Two-Way Time Transfer Using a Satellite [13] 
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In Figure 2.7, 
dAS = delay between Receiver A and satellite during time of transmission 
dSA = delay between satellite and Receiver A during time of transmission 
dBS = delay between Receiver B and satellite during time of transmission 
dSB = delay between satellite and Receiver B during time of transmission 
dTA = delay in Transmitter A 
dTB = delay in Transmitter B 
dRA = delay in Receiver A 
dRB = delay in Receiver B 
dSAB = delay in satellite when signal is going from Transmitter A to 

Receiver B 
dSBA = delay in satellite when signal is going from Transmitter B to 

Receiver A 
TIC = Time Interval Counter 
 

The Time Interval Counters (TICs) make basic time interval measurements at 

each site.  Each TIC starts with a pulse from the local clock and ends when the signal is 

received from the remote clock.  The remote clock sends a pulse at the same time that the 

local clock sends a pulse.  Nominally, one pulse per second is the rate used for TWTT.  

Each station records the time interval and the information is sent to the other station 

where the two values are differenced.  The data rate required for exchanging pulses is 

trivial, allowing TWTT to occur in real time [13]. 

The time interval information that is differenced at each station includes all 

delays shown in Figure 2.7.  An additional delay term, the Sagnac delay, is also included. 

The Sagnac delay is associated with the Earth’s rotation and the fact that transmitted 

signals have a finite velocity, as demonstrated in Figure 2.8.  The Earth stations and 

satellite are at position 1 when the pulses are sent to the satellite.  The rotation of the 

Earth causes the stations to move to position 3 before the signals are received.  The 

Earth’s rotation and the finite velocity of the signals have combined to make the transmit 
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signal path longer from Station B to Station A, and shorter from Station A to Station B.  

For static TWTT, the Sagnac error is effectively a deterministic propagation delay. 

 
Figure 2.8: Demonstration of the Sagnac Delay: Earth’s Rotation Produces Non-Reciprocity [13] 

By adding all delays to the difference, the complete time interval measurement 

for each station can be stated in the following equations: 

R(A) = A – B + dTB + dBS + dSBA + dSA + dRA + SAB            (2.2) 

R(B) = B – A + dTA + dAS + dSAB + dSB + dRB + SBA            (2.3) 

where 
 R(A) = time interval counter reading for Station A 
 R(B) = time interval counter reading for Station B 
 SAB = Sagnac delay from Station A to Station B 
 SBA = Sagnac delay from Station B to Station A 
 A = time of Clock A 
 B = time of Clock B 
 All other variables are the same as Figure 2.7 
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Differencing Equations 2.2 and 2.3, as seen in Figure 2.9, produces the expanded 

Two-Way Time Transfer equation. 

 
Figure 2.9: The Two-Way Time Transfer Equation [13] 

In Figure 2.9, 
C = speed of light 
Ar = area enclosing the projection of the satellite onto the Earth’s 

equatorial plane 
ω = Earth rotation rate 
 

In the case of static TWTT, the uplink and downlink propagation delays are 

essentially equal, thus dSA ≈ dAS and dSB ≈ dBS.  The difference in Sagnac delays (SAB – 

SBA) is constant for the static case of TWTT, and the transmitting and receiving delay for 

the Earth station equipment is equal, as is the satellite delay when routing a signal from 

Station A to Station B or Station B to Station A.  These factors cause cancellation when 

the measurements are differenced, and the TWTT equation is reduced to: 

A – B = 1
2

[R(A) – R(B) + SAB – SBA]      (2.4) 

where 
 R(A) = time interval counter reading for Station A 
 R(B) = time interval counter reading for Station B 
 SAB = Sagnac delay from Station A to Station B 

r
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 SBA = Sagnac delay from Station B to Station A 
 A = time of Clock A 
 B = time of Clock B 
 

Great precision and accuracy can be achieved by using a geostationary satellite 

for comparing and synchronizing clocks in this manner.  This accuracy is a result of 

many simplifications that occur in the process of calculating a time difference 

measurement using TWTT.  Propagation delays that occur during uplink and downlink to 

and from the satellite are essentially equivocal, causing them to cancel.  Sagnac effects 

can be accurately calculated without the need for precise information on clock locations 

and errors, further reducing complexity.   

2.4.2 Dynamic TWTT 

Dynamic TWTT is accomplished in the same fashion as static TWTT with the 

exception that one or more of the receivers is moving.  The moving receiver(s) introduce 

motion-related errors that were not present in the static case, changing the TWTT time 

differencing equation.  A dynamic TWTT configuration is illustrated in Figure 2.10. 

 
Figure 2.10: Dynamic Two-Way Time Transfer Using a Satellite [3] 
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Not all of the cancellations that applied to the static TWTT case transfer to the 

dynamic case.  For the dynamic TWTT scenario in Figure 2.10, it can be assumed that 

dAS ≈ dSA, since the geostationary satellite has no relative motion with respect to the earth 

station and the path length does not change.  This replicates the situation in the static 

case.  Unlike the static case, dSB ≠ dBS for the dynamic case, since the mobile platform 

has moved during the transmission of signals, causing the transmit and receive path 

lengths to be different between the geostationary satellite and mobile platform.  Because 

the mobile platform is in motion, the Sagnac effect will also vary and produces a time-

dependent value. 

Taking all this into account, the time differenced measurement for dynamic 

TWTT becomes: 

A – B = 1
2

[R(A) – R(B) – ΔPropagation Delay + SAB – SBA]     (2.5) 

 where 
R(A) = time interval counter reading for Station A 
R(B) = time interval counter reading for Station B 
SAB = Sagnac delay from Station A to Station B 
SBA = Sagnac delay from Station B to Station A 
A = time of Clock A 
B = time of Clock B 
ΔPropagation Delay = change in propagation delay over measurement 

interval 
 

The ΔPropagation Delay term is a time-varying value that changes based on the 

relative motion of the mobile platform as well as how the velocity vector is projected 

onto the line of sight vector from the geostationary satellite.  The Sagnac delay term (SAB 



 30

– SBA) is also time-varying, changing based on the absolute position of the two receivers 

and the velocity vector projected onto the equatorial plane [3]. 

 

2.5 Kalman Filter 

A Kalman filter is a sequential filter that continuously improves the estimate of a 

state vector by sequentially incorporating new data measurements into the estimate as 

they become available [24].  A state vector can include data regarding position, velocity, 

acceleration, and any other pertinent information.  A Kalman filter predicts the state in a 

future time epoch and then, upon reaching that new epoch, it uses collected 

measurements to correct the estimated state before predicting again to a new epoch.  

Kalman filters are able to compensate for ill-known or incompletely modeled dynamical 

systems [23] and are ideal for handling stochastic systems, such as navigation.  This 

section uses the equations and descriptions provided in [22] for presenting a Kalman 

filter summary. 

The Kalman filter is an iteration of time propagation and measurement 

incorporation [22].  It begins with an initial estimated state vector 0ˆ ( )tx  and an initial 

estimated covariance 0( )tP .  The covariance matrix is a statistical measure of the 

accuracy of the state vector 0ˆ ( )tx .  In the next step the state 0ˆ ( )tx  and covariance 0( )tP  

are predicted for the next epoch.  These predictions are merely calculated and are not 

computed using measurement data.  The Kalman filter uses Equations 2.6 and 2.7 to 

propagate the state and the covariance forward in time from 1kt
+
−  to kt

− .  Using this 

notation, kt  and 1kt −  refer to the times when measurements are incorporated and a 
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superscript plus sign (+) indicates the specified time is after measurement incorporation, 

while a superscript minus sign (-) indicates the specified time is before measurement 

incorporation. 

    1 1ˆ ˆ( ) ( ) ( )k k k kt t t t− +
− −= −x Φ x         (2.6) 

   1 1 1( ) ( ) ( ) ( )T
k k k k k k dt t t t t t− +

− − −= − − +P Φ P Φ Q        (2.7) 

 where 
1ˆ ( )kt

+
−x  = current state vector (before propagation) 

ˆ ( )kt
−x  = state vector propagated to next epoch 

1( )kt
+
−P  = current covariance matrix (before propagation) 

( )kt
−P  = covariance matrix propagated to next epoch 

1( )k kt t −−Φ  = state transition matrix, which propagates the state and 
covariance forward in time 

dQ  = second moment of the process noise, which is the discrete time 
equivalent covariance associated with process noise that occurs 
when covariance P is propagated through time [23] 

Once the state vector and covariance matrix are propagated forward in time to the 

next epoch, real measurements are incorporated to correct any error that may have been 

introduced during propagation.  The measurements must first be weighted properly 

before they can be incorporated into the estimated state and covariance.  If the 

measurements are very poor, the filter must know to rely less on the collected data and 

depend more upon its own estimation of the state.  Alternatively, if the measurements are 

very good, the filter must know to rely more heavily upon the collected data and depend 

less upon its own estimation of the state.  This weighting factor is calculated using the 

Kalman gain, as seen in Equation 2.8. 

    1( ) [ ( ) ]T T
k kt t− − −= +K P H HP H R        (2.8) 

 where 
K = Kalman gain matrix 
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( )kt
−P  = covariance matrix propagated to next epoch (but before 

measurement incorporation) 
H = observational partial derivative matrix, which relates the linearized 

observations (z) to the estimated states (x) 
R = measurement noise covariance matrix 
 

Once the Kalman gain has been calculated, the state and covariance are updated 

by incorporating the measurement data.  This process is illustrated in Equations 2.9 and 

2.10. 

   ˆ ˆ ˆ( ) ( ) [ ( )]k k kt t t+ − −= + −x x K z Hx          (2.9) 

   ( ) ( ) ( )k k kt t t+ − −= −P P KHP        (2.10) 

where 
z = measurement vector 

ˆ ( )kt
−−z Hx  = r = residual vector, which indicates how much error exists 

between the estimated state and the measurements (want residuals 
to be small, as it indicates the estimate is accurate) 

 

At this point, the cycle repeats as the Kalman filter again propagates the state and 

covariance to the next epoch, incorporates collected measurements, and updates the state 

and covariance using the measurements.  The Kalman filter loop is displayed in Figure 

2.11 (using slightly different notation). 
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Figure 2.11: Kalman Filter Loop [7] 

 

2.6 Summary 

This chapter presented the relevant background information necessary for this 

research.  Several key issues were explained, including the GPS system and pseudorange 

measurements, Earth-based reference coordinate systems, both static and dynamic Two-

Way Time Transfer techniques, and the Kalman filter.  Chapter 3 will describe the 

methodology of this research and how it used the background concepts explained in 

Chapter 2. 
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3 Methodology 

 

3.1 Introduction 

 
This chapter describes the methodologies and assumptions that were used to 

accomplish the research objectives described in Chapter 1.  This research is based on a 

simulation created using MATLAB® and contains five main functions.   

The first main function involves collecting desired input parameters from the 

user.  The second function uses the input parameters to create truth data that will simulate 

the environment that is being measured.  The third function uses the truth data to generate 

pseudorange and TWTT measurements for a geostationary satellite.  The fourth function 

inputs the generated measurements into a Kalman filter and predicts the state of the 

satellite at each epoch in the simulation.  The fifth and final function takes the results of 

the Kalman filter and compares them to the truth data to determine the accuracy of the 

filter. 

 

3.2 Parameters 

The simulation begins by collecting all the desired input values for a host of 

variables that will be used throughout the simulation.  The list of input variables is 

described in the following sections.  All the values in the parameters function are 

declared globally for use in all functions throughout the simulation. 
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3.2.1 Initial ECI State for Geostationary Satellite 

The initial ECI state consists of X, Y, Z position and velocity values that describe 

the location of the satellite at the start of the simulation.  This vector is nominally 

configured to place the satellite over the Prime Meridian (0 degrees longitude) at an 

altitude of 35,785.863 kilometers with an orbital velocity of 3.07466 km/s.  The result is 

a circular geostationary orbit. 

3.2.2 Simulation Run Time and Time Step Interval 

The simulation run time is set for a single day.  The time step interval denotes 

how often measurement data is collected by the satellite as it orbits and is set for 60 

seconds.  If a higher measurement resolution is desired, the time step can be shortened at 

the expense of a longer computation time. 

3.2.3 Ephemeris Date Selection 

As discussed in Chapter 2, the ephemeris describes the location of a satellite 

within its orbit.  The ephemeris data for the GPS constellation may be chosen from any of 

ten possible days that were randomly selected from each year between 1997 and 2006.  

For simplicity in the model, each chosen day is a Sunday.  GPS time is recorded in week 

seconds and resets at midnight every Sunday.  By starting the simulation at midnight on 

Sunday, which is zero GPS week seconds, many complications can be avoided in the 

simulation code.  These issues arise when attempting to keep track of the GPS week 

second time interval and initialize the time vector accordingly, making it much easier to 

always start at a time value of zero. 
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3.2.4 GPS Measurement Model Selection 

Two models are available for generating GPS pseudorange measurements—a 

simple model and an advanced model.  The simple model uses a constant cut-off angle 

between the GPS satellite and the Earth.  As long as the Earth is not blocking the 

transmitted signal from the GPS satellite, it is received by the GEO satellite.  The 

advanced model is more realistic, because it accounts for the antenna gain on the GPS 

satellite and the GEO satellite and includes the signal path loss that occurs as the signal 

travels through space.  If the received power is below a specified threshold, the signal is 

considered too weak and cannot be used for generating pseudorange measurements. 

The advanced GPS measurement model has additional parameters that can be 

adjusted.  There are two gain patterns that can be used for the GPS satellite, simple and 

advanced.  The simple gain pattern contains fewer values, ranging between 0-30 degrees 

off-boresight, and is based on data found in [19].  The advanced gain pattern has values 

from 0-180 degrees off-boresight and more realistically portrays an actual GPS antenna 

and is based on data found in [9].  The GEO satellite uses the gain pattern taken from the 

commercial patch antenna listed in [19], replicating actual flight hardware. 

3.2.5 Clock Type Selection 

The simulation has a choice of three clock types to use as the GEO satellite clock 

and as the TWTT reference clock.  The possible clock oscillators include Rubidium, 

Cesium, and ovenized crystal.  The clock parameters are taken from [14].  The Rubidium 

clock is the most precise and the ovenized crystal is the least precise.  Ovenized crystal is 

an inexpensive and prolific type of clock oscillator and is the typical clock of choice built 

into current satellites. 
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3.2.6 Clock Model Parameters 

In order to accurately predict how the clocks will propagate forward in time, 

certain parameters must be configured.  The GEO satellite clock and TWTT reference 

clock are assigned an initial accuracy in bias and drift that is fed into the truth state 

propagator and the Kalman filter, allowing both propagators to model the clocks 

accurately.  These initial values are standard deviations of the bias and drift error and will 

be multiplied by a random number and fed into the covariance matrix when starting the 

clock simulation. 

3.2.7 Two-Way Time Transfer Parameters 

The TWTT measurements are modeled to have a white Gaussian measurement 

noise error, expressed as a standard deviation.  The TWTT measurement noise error is a 

result of signal degradation during transmission and in the hardware, affecting 

measurement accuracy, and will be held constant.  The values used were 10, 3, 0.3, 0.03, 

and 0.003 meters for this simulation. 

3.2.8 Kalman Filter Parameters 

The Kalman filter contains initialization values that are used in the covariance 

matrix for predicting the level of measurement accuracy.  The initial accuracy in the 

position and velocity measurements are provided to the filter when it starts.  There is also 

a process noise value, expressed as a standard deviation, which is a degradation of the 

measurement signal as it travels through the associated hardware, reducing accuracy. 
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3.2.9 On/Off and Selection Flags 

Numerous naturally-occurring errors are built into the simulation model that can 

be turned on or off.  The on/off flags enable or disable clock errors in the GEO satellite 

and/or TWTT reference clock, measurement noise errors in the pseudorange and/or 

TWTT measurements, hardware-related process noise errors, and initial state errors in the 

Kalman filter. 

The selection flags allow the user to choose different modeling options in the 

simulation.  The GPS measurement model includes a simple and advanced model, and 

the TWTT measurement model includes two choices:  using no TWTT measurements 

and using TWTT measurements where the reference clock has a drift rate that does not 

coincide with GPS time. 

3.2.10 Monte Carlo Parameters 

The simulation is equipped to handle Monte Carlo simulation, involving multiple 

iterations of the simulation with different random numbers.  Monte Carlo simulation is a 

statistical analysis that strives to provide enough data, through repetition and random 

inputs, to accurately represent the stochastic characteristics of the model.  In this 

simulation, Monte Carlo simulation is turned on or off with a flag, and the total number 

of iterations is defined by the user. 

3.2.11 Constants 

This simulation uses many constant values throughout the various sub-functions.  

These constants include the speed of light, the radius of the Earth, the radius of a GPS 

orbit, the frequency of the GPS L1 signal, nominal transmit power of a GPS antenna, the 
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gravitation parameter of the Earth, and the rotation rate of the Earth.  To eliminate chance 

for error, the sub-functions reference all constants from a single global location, as 

opposed to being declared in each sub-function that requires the value. 

 

3.3 Truth Model 

The truth model function is responsible for generating all data that will be 

considered as the absolute truth.  There are three main sections in this function:  

propagating the geostationary satellite state forward over a specified time interval, 

calculating the positions and clock states for each GPS satellite during that time interval, 

and modeling clock errors. 

3.3.1 Propagate Geostationary Satellite State 

Implementation of a simple Kalman filter propagates the GEO satellite state 

vector into the future.  The initial state vector 0ˆ ( )tx  is provided along with an initial 

covariance matrix 0( )tP  and a dynamics matrix 0( )tF .  As explained previously, the 

covariance matrix describes the accuracy of the state vector values, and the dynamics 

matrix explains the motion of the state vector. 

The GEO satellite state vector contains six values, displayed in Equation 3.1, 

where , ,X Y Z are the position values and , ,X Y Z  are the velocity values. 

     ˆ

X
Y
Z
X
Y
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x          (3.1) 
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The dynamics matrix describes the motion of the GEO satellite, which is a 

circular orbit, and is in a continuous form.  The dynamics matrix is constructed to satisfy 

the relationship described in Equation 3.2. 

      x x= F          (3.2) 

The orbital acceleration for a two-body circular orbit is calculated by using 

Equation 3.3.  This expression is needed to find the time derivative of the orbital velocity, 

which is needed to build the relationship indicated in Equation 3.2. 

     3
ˆ ˆ

r
μ

= −a x          (3.3) 

 where 
  â  = orbital acceleration vector 
  μ = Earth gravitational constant 
  r = 2 2 2X Y Z+ +  = orbital radius 
  x̂  = orbital position vector 

Using Equation 3.3, a list of relationships is formulated for use in creating the 

dynamics matrix.  The list of relationships is shown in Equation 3.4, where 

[ ]1 2 3 4 5 6X Y Z X Y Z x x x x x x
Τ Τ⎡ ⎤ =⎣ ⎦ . 
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         (3.4) 

Using Equation 3.4, Equation 3.2 can be written in expanded form as: 
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      (3.5) 

For ease in a computer simulation, the continuous form equation must be 

converted to a discrete-time equation [22].  This conversion takes the dynamics matrix F 

and turns it into the state transition matrix Φ, as shown in Equation 3.6. 

     te Δ= FΦ          (3.6) 

where 
 1k kt t t+Δ = − = time interval 

A similar conversion must take place for the covariance matrix Q to ensure it is 

also in a discrete-time form.  Shown below, the continuous Q matrix represents process 

noise being added to the acceleration terms to account for unmodeled orbit perturbations. 
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Using Equation 3.8, the continuous Q becomes the discrete-time Qd.  The Qd 

matrix will be used when introducing process noise. 

    
0

( ) ( )
t

dτ τ τ
Δ

Τ= ∫dQ Φ QΦ         (3.8) 
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The next step is to propagate the state to the next time interval by using Equation 

3.9. 

    1 1ˆ( ) ( ) ( )k k k kt t t t− +
− −= −x Φ x         (3.9) 

If process noise is to be included in the propagation, correlated randomized white 

noise must be introduced to Equation 3.9.  This is achieved by using the U-D 

factorization algorithm (explained in [7]) on the Qd matrix, which will provide the 

correlation factor.  The decomposition of Qd into U and D is illustrated in Equation 3.10. 

     Τ=dQ UDU        (3.10) 

 where 
U = composed of elements along major diagonal of Qd, the nontrivial 

elements in upper triangular part of Qd, zeros elsewhere 
  D = composed of elements in major diagonal Qd, zeros elsewhere 

By multiplying the U-D factorization results with a 6 x 1 vector of random 

numbers generated by MATLAB®, the result is a 6 x 1 vector wd of correlated 

randomized white noise values that correspond with the positions and velocites in the 

state vector x̂ .  This process is described in Equation 3.11. 

     =dw U Dn        (3.11) 

 where 
  wd = 6 x 1 vector of correlated white noise 
  n = 6 x 1 vector of random numbers 

If so desired, process noise can be included in the state propagation by using 

Equation 3.12.  Inclusion of process noise is selected by using a flag in the parameters 

function.  It was always selected, except for initial simulation debugging. 

    1 1ˆ( ) ( ) ( )k k k kt t t t− +
− −= − + dx Φ x w      (3.12) 
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3.3.2 Calculate GPS Satellite Positions and Clock States 

After propagating the GEO satellite state vector forward in time over the entire 

simulation time interval, the truth model function then calculates the positions and clock 

states of each individual GPS satellite over the entire simulation time interval.  This 

information is stored for use in the generated measurements function. 

There are two sets of ephemeris data, broadcast and precise.  As described in 

Chapter 2, the broadcast ephemeris is a prediction of the orbital parameters for the GPS 

satellites, while the precise ephemeris is a calculation of the orbital parameters using 

collected measurement data.  The broadcast ephemeris is used by a GPS receiver to 

calculate a navigation solution, while the precise ephemeris contains two-week-old data 

and can only be used for post-processing.  In this simulation, the precise ephemeris is 

used to calculate the true position and clock state of each GPS satellites, while the 

broadcast ephemeris is used when generating simulated measurements. 

3.3.3 Clock Model 

GPS depends upon highly accurate atomic clocks that can provide 

synchronization between the satellites and receiver.  Synchronization occurs through 

estimating the time offset, drift, and drift rate of the receiver clock relative to GPS time.  

To ensure the simulation accurately represents real clocks, the clock model must replicate 

the performance of atomic clocks.  This sub-section closely follows the descriptions 

given in [8] and [25]. 

GPS satellites use Rubidium and Cesium atomic clocks to maintain accurate GPS 

time.  In addition to these clock types, ovenized crystal will also be modeled for use on 
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the GEO satellite.  Ovenized crystal is a very common clock found on satellites that do 

not require the extremely precise time measurements used in navigation. 

The performance of atomic clocks can be simulated using a three-state 

polynomial process driven by white noise.  The discrete process model and its covariance 

can be written as [6]: 
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 where 
1( )kx t and 1 1( )kx t + = clock bias error at times kt and 1kt +  

2 ( )kx t and 2 1( )kx t + = clock drift error at times kt and 1kt +  

3 ( )kx t and 3 1( )kx t + = clock drift rate error at times kt and 1kt +  

1k kt tτ += − = time interval 
w1(k), w2(k), and w3(k) = independent white noises 
q1, q2, q3 = continuous process noise power spectral densities representing 

the bias, drift, and drift rate 
( )τΦ = state transition matrix propagating current clock bias, drift, and 

drift rate errors forward in time from kt  to 1kt +  
( )τdQ = discrete-time process noise covariance matrix 

The clocks cannot be modeled deterministically because of their stochastic nature.  

Instead, the performance of the random walk noise values (w1, w2, w3) is modeled and the 

characteristic Allan Variance curves of the atomic frequency standards are matched [7].  

An example of a three-state random clock process is illustrated in Figure 3.1.  A best fit 
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curve drawn through the plot shows how the three-state atomic clock performance is 

quadratic in nature.  The statistics of the random walk noise values are determined by the 

values of the variance elements (q1, q2, q3) of Qd in Equation 3.15 [5]. 

 
Figure 3.1: Comparison of Simulated Clock Error and Quadratic Fit [5] 

The q values for this simulation were chosen by leveraging research conducted in 

the Clock Improvement Initiative [14] and are displayed in Table 3.1.  To calculate a 

clock’s three-state random process in the simulation, initial clock bias, drift, and drift rate 

values are selected from Table 3.1 and then propagated using Equation 3.14.  The Qd 

from Equation 3.15 was used to generate properly correlated w1, w2, and w3 terms using 

the UD factorization technique described in Equations 3.10 and 3.11. 

Table 3.1: Process Noise Values for Atomic Clocks 

 Rubidium Clock Cesium Clock Ovenized Crystal Clock
q1 (bias) 1.11 x 10-22 s2/s 4.44 x 10-22 s2/s 1.6 x 10-21 s2/s 
q2 (drift) 2.22 x 10-32 s2/s3 3.33 x 10-32 s2/s3 16π2 x 10-23 s2/s3 

q3 (drift rate) 6.66 x 10-45 s2/s5 0 s2/s5 0 s2/s5 
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When using a three-state model, a value of zero for the q3 term creates a 

singularity.  To prevent this, a value of 1 x 10-100 s2/s5 is used in the simulation instead of 

zero.  This value is sufficiently small enough to represent zero while also being large 

enough to prevent a singularity from occurring.  

 

3.4 Generated Measurements 

The measurement generation function is responsible for creating pseudorange 

measurements by using the information supplied by the truth generation function.  The 

pseudorange measurements can be calculated using a simple or an advanced GPS 

measurement model. 

3.4.1 Pseudorange Measurements 

Pseudorange values are normalized range measurements with the addition of 

errors due to pseudorange measurement noise, GPS satellite clock bias, and receiver 

clock bias.  The pseudorange equation is: 

        2 2 2( ) ( ) ( )sat sat sat sat
rec rec rec rec PRx x y y z z c t c tρ δ δ υ= − + − + − + − +    (3.16) 

where 
  , ,sat sat satx y z = true ECEF position of the satellite (meters) 
  , ,rec rec recx y z = true ECEF position of the receiver (meters) 
  rectδ = receiver clock bias (seconds) 
  sattδ = satellite clock bias (seconds) 
  PRυ = pseudorange error (meters) 
  c = speed of light (meters/second) 

The simulation allows various errors to be turned on and off, so the pseudorange 

is calculated in stages to produce more efficient code.  Initially, the pseudorange 

measurement is the exact distance between the GPS satellite and the GEO satellite, as is 
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described by the square root value in Equation 3.16.  If no errors were turned on, this 

would be the final output of the pseudorange generation. 

The next step is to determine which errors are turned on, and add each error value 

incrementally. If all errors are turned on in the simulation, then the final output of the 

pseudorange generation would match Equation 3.16.  The receiver and GPS satellite 

clock errors are generated in the truth model and would be incorporated into the 

pseudorange measurement if their on/off flags were turned on in the parameters function. 

The measurement generation function has two models for simulating the 

pseudorange measurements.  The simple model is very rudimentary and is 

computationally less expensive, while the advanced model is much more realistic. 

3.4.2 Simple GPS Measurement Model 

The simple GPS measurement model uses distinct cut-off angles for determining 

satellite visibility and does not include the side lobes of the GPS transmit antenna.  The 

minimum cut-off angle is where the Earth occludes the GPS signal, and the maximum 

cut-off angle is where the GPS antenna no longer transmits.  Figure 3.2 illustrates the 

simple measurement model. 

The ionosphere extends to about 400 kilometers above the Earth’s surface and 

will bend the GPS signals, creating errors in the pseudorange measurement.  For this 

reason, the Earth’s surface cannot be used as the occlusion for the GPS signals, since any 

signals that come close to the Earth’s surface will be distorted and erroneous.  

Ionospheric errors can be corrected and removed, but this simulation does not use such 

methods.  For simplicity, the ionosphere boundary is considered opaque, and any signals 
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that pass through it are ignored.  In a sense, it is like extending the radius of the Earth by 

400 kilometers. 

The nominal beamwidth of a Block II/IIA GPS satellite antenna is approximately 

42.6˚ [1], which equates to a 21.3˚ off-nadir look angle.  This value becomes the 

maximum look angle for the GPS satellite, as seen in Figure 3.2. 

 
Figure 3.2: Simple GPS Measurement Model Diagram (not to scale) 

The simple GPS measurement model produces a pseudorange measurement for a 

given GPS satellite only if the GEO satellite falls within the visible region seen in Figure 

3.2.  Signal power is not modeled and it is assumed that line-of-sight visibility guarantees 

a pseudorange measurement.  The standard deviation of the pseudorange measurement 

noise error is constant, set at five meters.  If the pseudorange measurement noise error is 

not turned on in the simulation, the pseudorange value is the exact distance between the 

GEO and GPS satellites. 
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3.4.3 Advanced GPS Measurement Model 

The advanced GPS measurement model is much more robust than the simple 

model, taking into account the individual antenna gain patterns of each satellite to 

determine the received signal strength.  It then uses the received signal strength to 

calculate the value of the pseudorange measurement noise error, which is taken from a 

table of values.  The minimum cut-off angle imposed by the upper ionosphere is still in 

effect.  The advanced GPS measurement model is illustrated in Figure 3.3 

 
Figure 3.3: Advanced GPS Measurement Model Diagram (not to scale) 

To determine the strength of the GPS signal that is received by the GEO satellite, 

the satellite nadir look angles are needed.  If the GEO satellite and GPS satellite positions 

are known, simple vector math will produce the angles θ and α (referenced in Figure 3.3), 

which are the GPS satellite look angle and GEO satellite look angle, respectively.  The 

calculated look angles are then used with antenna gain pattern information to determine 

the received signal strength.  By knowing the look angle, it is a simple measure of tracing 
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the plot to find the corresponding antenna gain.  This is accomplished for both the GPS 

satellite and the GEO satellite. 

An antenna gain pattern plot can be created in a laboratory by making 

measurements on an antenna and recording the signal strength at various horizontal look 

angles.  This simulation uses either a simple or advanced GPS antenna gain pattern plot, 

both based on the Block II/IIA GPS satellites.  For the GEO satellite antenna, the 

simulation uses an antenna gain pattern plot taken from a commercial patch antenna that 

is currently used on spacecraft. 

The simple GPS satellite antenna gain pattern plot includes the primary signal 

lobe and the secondary lobe, as seen in Figure 3.4, and drops off at approximately 43˚ 

from nadir.   

 
Figure 3.4: Simple GPS Antenna Gain Pattern Plot [19] 

The advanced GPS antenna gain pattern plot, shown in Figure 3.5, includes the 

primary and secondary lobes, as well as additional information all the way out to 180˚ 

from nadir.  A gain pattern is not necessarily symmetrical, but, for simplicity in this 
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simulation, it is assumed that the gain pattern does not change with varying vertical 

angles.  Similar GPS broadcast antenna gain pattern data is located in [4] and [11]. 

 

 
Figure 3.5: Advanced GPS Antenna Gain Pattern Plot [9] 

The GEO satellite uses the gain pattern from a patch antenna that flew aboard the 

Falcon Gold experiment, designed by students at the Air Force Academy [19].  This 

particular antenna is representative of hardware that has flown on previous satellites.  The 

antenna gain pattern plot is illustrated in Figure 3.6. 
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Figure 3.6: Patch Antenna Gain Pattern Plot [19] 

The received power can be calculated by using the transmit and receive antenna 

gains, the transmit power, the distance between the transmit and receive antennas, and the 

wavelength of the transmitted signal.  The resulting equation is listed below in standard 

and decibel format [16]. 
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π π
=       (3.17) 

   , , , , 1020 log 22 2s dB T dB T dB R dB dBP P G G R λ= + + − − +     (3.18) 

 where 
Ps = received signal power (Watts) 
PT = signal power at transmit antenna 
GT = transmit antenna gain 
GR = receive antenna gain 
R = distance between transmit and receive antennas 
λ = signal wavelength (GPS L1 wavelength ≈  5.255 meters) 

The resulting value is the signal power at the exit of the receiver antenna.  All 

hardware has an associated noise value which must be subtracted from the received 

power when the signal is processed.  The final value is referred to as C/N0 (also written as 

Ps/N0), which is the carrier to noise density, where N0 is the noise density.  This 
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simulation uses a standard N0 value of 202 decibel-Watts [16], which is subtracted from 

Equation 3.18 to produce the final C/N0 value. 

Once the received signal strength has been calculated, the pseudorange 

measurement noise error can be established.  The pseudorange measurement noise error 

values are developed in a laboratory setting by testing the operating hardware, and vary 

between GPS receivers.  The data is compiled into a table of corresponding signal 

strengths, as illustrated in Figure 3.7.  This plot is expressed in received power and not 

C/N0.  By subtracting N0 (-202 dBW) from the signal strength values listed, the C/N0 

values can be obtained.  This plot is representative of an extremely high-sensitivity 

receiver.  Similar C/N0 data is located in [4]. 

 
Figure 3.7: Pseudorange Measurement Noise Error Standard Deviation Plot [11] 

The pseudorange measurement noise error value is given as a standard deviation, 

which is in turn multiplied by a MATLAB® random number, providing the measurement 

error that will be added to the pseudorange value.  The pseudorange measurement noise 
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error can be turned on or off in the simulation.  If the error is turned off, the pseudorange 

value will equal the exact distance between the GPS and GEO satellites, just as in the 

simple GPS measurement model. 

 

3.4.4 TWTT Measurements 

The Two-Way Time Transfer measurements in this simulation do not include 

Sagnac error or motion related errors, since they are largely deterministic and can be 

removed.  The simulation could add the errors and then remove them, but it is a wasted 

step that will only increase computational cost and would have no added value.  For 

simplicity, this simulation assumes that the propagation delays will cancel as in the static 

TWTT case.  The resulting TWTT measurement equation is: 
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     (3.19) 

where 
GEOtδ  = GEO satellite clock error 

REFtδ  = reference clock error 

TWTTυ  = TWTT measurement error 
c = speed of light 

If TWTT measurements are to be used in the simulation, they are given to the 

Kalman filter along with the pseudoranges for measurement incorporation.  The TWTT 

measurement error can be turned on and off, using values of 10, 3, 0.3, 0.03, and 0.003 

meters. 
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3.5 Kalman Filter 

A Kalman filter was chosen over a least squares batch filter, as was used in the 

research conducted in [8].  The Kalman filter allows for the use of new measurement data 

as it becomes available and easily allows for any stochastic processes, such as clock 

errors.  The least squares estimation algorithm can not use data as it is collected, 

requiring all information up front.  It also is more difficult to model stochastic processes 

in a least squares estimator. 

The Kalman filter has several initial values that govern the estimation algorithm.  

The filter must know the accuracy level of the incoming measurements and how much to 

trust in their positioning information, as well as the amount of process noise in the 

system. 

3.5.1 Initial State Values 

The first thing needed by the Kalman filter is an initial state, including position, 

velocity, and clock error.  These initial values are gathered from the truth data, so that the 

filter will begin its estimation at the same initial point of the truth data.  The state vector 

is given in Equation 3.20. 

  ˆ GEO GEO ref refX Y Z X Y Z c t c t c t c tδ δ δ δ
Τ

⎡ ⎤= ⎣ ⎦x    (3.20) 

 where 
, ,X Y Z  = GEO satellite position components 
, ,X Y Z  = GEO satellite velocity components 

GEOtδ  and GEOtδ  = GEO satellite clock bias and clock drift 

reftδ  and reftδ  = TWTT reference clock bias and clock drift 
c = speed of light 

If initial state error is turned on, a particular error standard deviation is multiplied 

by a random number and added to each initial value.  The initial state error standard 



 57

deviations are listed in Table 3.2.  These were considered reasonable values for the start 

of a simulation run. 

Table 3.2: Initial State Error Standard Deviation Values 

Initial State Value Standard Deviation Value
Position 20 m 
Velocity 0.01 m/s 

Clock bias 14 m 
Clock drift 20 m/s 

 

The dynamics matrix F describes the motion of the satellite, and is modeled using 

the same equations as the truth generation (see Equation 3.6).  The Kalman filter F matrix 

includes the clock terms, making it a 10 x 10 matrix, as seen below. 

            x x= F        (3.21) 
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   (3.22) 

where 
, ,X Y Z  = GEO satellite position components 
, ,X Y Z  = GEO satellite velocity components 
, ,X Y Z  = GEO satellite acceleration components 

GEOtδ , GEOtδ , and GEOtδ  = GEO satellite clock bias, drift, and drift rate 

reftδ , reftδ , and reftδ = TWTT reference clock bias, drift, and drift rate 
c = speed of light 
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Since the truth generation and Kalman filter use the same dynamics, they will 

produce the same results if all errors are turned off.  This provides a method for 

quantitative error-checking of the code. 

The initial covariance matrix P describes the accuracy of the state vector, and will 

be updated as the filter iterates.  The first six values along the diagonal are for the X, Y, Z 

position and velocity values.  The last four values along the diagonal are for the clock 

bias and drift of the GEO satellite and TWTT reference clocks.  The P matrix uses the 

values shown in Table 3.2 and is described in Equation 3.23, where subscripts p = 

position, v = velocity, cb = clock bias, and cd = clock drift. 
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⎢ ⎥
⎢ ⎥⎣ ⎦

P    (3.23) 

The covariance matrix Q describes the errors associated with propagating the 

state covariance matrix P through time.  The Q matrix includes the process noise value of 

the GEO satellite and the related clock q values.  The process noise value is equal to the 

process noise value used in the truth generation and the clock q values are taken from 

Table 3.1, depending upon the type of clocks that are used.  Equation 3.24 describes the 

Q matrix used in the Kalman filter, and it does not change throughout the simulation. 



 59

      

1

2

1

2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ( ) 0 0 0
0 0 0 0 0 0 0 ( ) 0 0
0 0 0 0 0 0 0 0 ( ) 0
0 0 0 0 0 0 0 0 0 ( )

n

n

n

cq sv
cq sv

cq ref
cq ref

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q   (3.24) 

where 
nσ  = GEO satellite process noise 

1( )q sv  = GEO satellite clock bias process noise 

2 ( )q sv  = GEO satellite clock drift process noise 

1( )q ref  = reference clock bias process noise 

2 ( )q ref  = reference clock drift process noise 
c = speed of light 

3.5.2 Filter Execution 

Once the initial state vector, dynamics matrix, and covariance matrices are 

defined, the Kalman filter is ready to begin.  The first step is to calculate the state 

transition matrix Φ  by using the dynamics matrix F and the time interval tΔ , shown in 

Equation 3.25. 

     te Δ= FΦ        (3.25) 

The next step is to calculate Qd, the discrete time version of the continuous-form 

Q matrix.   

    
0

( ) ( )
t

dτ τ τ
Δ

Τ= ∫dQ Φ QΦ       (3.26) 

Next, the filter propagates the state and covariance, as seen below: 



 60

    1 1ˆ( ) ( ) ( )k k k kt t t t− +
− −= −x Φ x       (3.27) 

   1 1 1( ) ( ) ( ) ( )T
k k k k k k dt t t t t t− +

− − −= − − +P Φ P Φ Q      (3.28) 

Measurement information for a Kalman filter must follow the equation listed 

below. 

    [ ]( ) ( ), ( )i i i it t t t= +z h x v       (3.29) 

 where 
( )itz  = measurement vector at time ti 
( )itv  = zero-mean white Guassian vector process noise of strength R, 

independent of process noise 
 

The GPS pseudorange measurements are of the form: 

      2 2 2( ) ( ) ( )sat sat sat sat
rec rec rec rec PRx x y y z z c t c tρ δ δ υ= − + − + − + − +    (3.30) 

 
Combined with Equation 3.29, Equation 3.30 implies the following: 

 [ ] 2 2 2( ), ( ) ( ) ( )sat sat sat sat
i i rec rec rec rect t x x y y z z c t c tδ δ= − + − + − + −h x    (3.31) 

After the h vector equations are written, the observational partial derivative 

matrix H is constructed.  The H matrix relates the linearized observations to the 

estimated states, and is expressed in Equation 3.32. 

     

1

2

n

H
H

H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

H        (3.32) 

where  

   1 2
1 2

ˆˆ ˆ ( )( ) ( ), , ,
ˆ ˆ ˆ

n
n

hh hH H H δδ δ
δ δ δ

= = =
xx x

x x x
     (3.33) 
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x

     (3.34) 

The H matrix is of size n by m, where n is the number of collected measurements 

and m is the number of states in x̂  (in this simulation, m = 10).  For example, if there are 

two pseudorange measurements and one TWTT measurement at a given epoch, the H 

matrix and measurement vector z will be: 

   

1 1 1

2 2 2

0 0 0 1 0 0 0
0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0

x y z

x y z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

e e e
H e e e      (3.35) 

     
1

2

TWTT

ρ
ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z        (3.36) 

 where 

  
2 2 2( ) ( ) ( )

sat
rec

x sat sat sat
rec rec rec

x x
x x y y z z

−
=

− + − + −
e  

  
2 2 2( ) ( ) ( )

sat
rec

y sat sat sat
rec rec rec

y y
x x y y z z

−
=

− + − + −
e  

  
2 2 2( ) ( ) ( )

sat
rec

z sat sat sat
rec rec rec

z z
x x y y z z

−
=

− + − + −
e  

The error term v(ti) in the Kalman filter measurement equation is controlled by 

the covariance matrix R.  The R matrix is specified for a given measurement vector.  This 

means that each pseudorange measurement will have its own values in the R matrix.  The 

R matrix is typically based upon expected error statistics, which is based upon knowledge 

of the system. 

In the example given above, the corresponding R matrix will be: 
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σ
σ

σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R       (3.37) 

where 
PRσ  = standard deviation value of pseudorange measurement noise 

TWTTσ  = standard deviation value of TWTT measurement noise 

It is now time for the filter to incorporate the measurements, involving several 

steps.  The filter will calculate the residuals, compute the Kalman gain, and update the 

state and covariance. 

The residuals are the difference between the predicted state and the observed 

state.  Residuals are calculated using the following equation: 

     ( ) ( )i it t= −r z h       (3.38) 

The Kalman gain determines the weighting factor that is applied to the 

measurement data.  The Kalman gain depends upon the covariance and will instruct the 

filter to trust the measurement data more or less, depending upon its accuracy.  The 

Kalman gain calculation is listed below. 

    1( ) [ ( ) ]T T
k kt t− − −= +K P H HP H R      (3.39) 

 where 
K = Kalman gain matrix 

( )kt
−P  = covariance matrix propagated to next epoch (but before 

measurement incorporation) 
H = observational partial derivative matrix, which relates the linearized 

observations (z) to the estimated states (x) 
R = measurement noise covariance matrix 

Now the Kalman gain can be used to update the state and covariance, using the 

following equations (stated previously in Chapter 2): 
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        ( )ˆ ˆ ˆ( ) ( ) ( ),k k k kt t t t+ − −⎡ ⎤= + − ⎣ ⎦x x K z h x      (3.40) 

    ( ) ( ) ( )k k kt t t+ − −= −P P KHP       (3.41) 

Lastly, the filter updates the F, Φ , and Qd matrices.  In the new epoch, the GEO 

satellite will have a new radius, which changes the F matrix.  The new F matrix will then 

change the Φ  and Qd matrices using the same equations listed above. 

Before starting the next iteration, the current filter information is saved into a 

history matrix.  When the simulation is complete, the history matrix will contain the state, 

covariance, and residuals values for each epoch. 

 

3.6 Results Analysis 

Analyzing the simulation results involves comparing the Kalman filter estimated 

state with the true state.  The analysis depends on the simulation type, being either a 

single run or a Monte Carlo collection of runs. 

The most important result is the three-dimensional positioning error, which will 

be expressed as Mean Radial Spherical Error (MRSE).  The MRSE is analogous to a 

three-dimensional Distance Root Mean Square (DRMS) value.  For a Monte Carlo 

simulation, the MRSE for a particular epoch is calculated by using the following 

equation: 

    
( )2 2 2

1

n

i i i
i

x y z
MRSE

n
=

+ +
=
∑

      (3.42) 
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 where 
n = number of simulation runs 

true filter
i i ix X X= −  = difference of truth and filter X position for epoch i 

true filter
i i iy Y Y= −  = difference of truth and filter Y position for epoch i 

true filter
i i iz Z Z= −  = difference of truth and filter Z position for epoch i 

The MRSE value can also be calculated by using the standard deviation values 

that exist in the covariance matrix for a particular epoch, as seen below. 

   
( )2 2 2

2 2 21

n

i i i
i

x y z

x y z
MRSE

n
σ σ σ=

+ +
= ≈ + +
∑

    (3.43) 

 where 
  , ,x y zσ σ σ  = standard deviation values for the X, Y, Z coordinates 

As the number of simulations n increases, the two square root values approach the 

same value.  Using a Monte Carlo simulation, each run will generate different position 

values, but the filter-computed covariance values will be the same for every single run.  

As a result, the covariance standard deviation values from a single run can replace the 

position values from hundreds of runs in a Monte Carlo simulation. 

To insure the covariance values are accurate and the equality assumption is true, 

the standard deviation values are first compared with a Monte Carlo simulation using a 

high number of runs.  If the MRSE computed from the Monte Carlo simulation closely 

resembles the MRSE computed from the covariance values of a single run, the model is 

validated and only a single run is necessary to calculate the MRSE from that point on. 

After the MRSE is calculated for each time epoch, the Root Mean Square (RMS) 

is calculated for the entire collection of epochs, using Equation 3.44.  The final result is a 

single RMS value that depicts the level of error in the estimation filter. 
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i
i

x
RMS

n
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      (3.44) 

 where 
  n = number of epochs 
  xi = MRSE for epoch i 

 

3.7 Summary 

This Chapter describes the five main functions of the simuation.  The five 

functions include loading simulation parameters, generating truth data, generating 

measurement data, running a Kalman filter, and analyzing the results.  Chapter 4 will 

discuss the results and analysis of the simulation. 
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4 Results and Analysis 

 

4.1 Introduction 

This chapter provides the simulation results and analyses.  First, preliminary 

results are explained that will allow a better understanding of the simulation data.  The 

baseline results are then described, giving a reference point from which to compare the 

results of each trade study.  Five trade studies explore the effects of using GPS ephemeris 

data from different days, using a simple or complex GPS receiver model, using simple or 

complex antenna gain patterns, using different combinations of clock types in the 

receiver and TWTT reference clock, and varying the TWTT measurement noise error. 

 

4.2 Preliminary Results 

The primary purpose of this research is to explore the impact of using TWTT 

measurements on the positioning accuracy of GPS navigation in a geostationary orbit.  As 

a first step in validating the simulation model, several Monte Carlo simulations were 

performed to analyze the statistical results and confirm the output was reasonable. 

4.2.1 Graphical Results 

The Monte Carlo simulations consisted of 100 iterations, and sample raw data is 

displayed in Figure 4.1.  Each line represents the difference between the true position and 

the Kalman filter-predicted position over a single simulation run.  Each simulation uses 

the same parameters but will utilize a different set of random numbers produced by the 

random number generator in MATLAB®. 
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Figure 4.1: Monte Carlo Measurements vs Time for 100 Iterations (Standard GPS Receiver 

Sensitivity, no TWTT) 

 

The Monte Carlo simulation results are more appropriately displayed by using the 

Monte Carlo mean, Monte Carlo mean plus/minus the Monte Carlo standard deviation, 

and the covariance calculated by the Kalman filter, as seen in Figure 4.2.  The blue line 

represents the Monte Carlo mean value at each measurement epoch.  Since the Monte 

Carlo simulation is composed of 100 iterations, each point on the blue line is the mean of 

100 values.  The dotted black lines represent the sum and difference of the Monte Carlo 

mean and the standard deviation of the Monte Carlo mean.  The red lines represent the 

covariance values computed by the Kalman filter.  As the number of simulation runs 
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approaches infinity, the plots of the Monte Carlo mean plus/minus the standard deviation 

should exactly match the plots of the filter-computed covariance. 
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Figure 4.2: 100-Run Monte Carlo Measurement Mean, Measurement Standard Deviation, and 

Filter-Computed Covariance 

 
The Monte Carlo standard deviation results closely match the filter-computed 

covariance results, indicating that the covariance analysis will be representative of the 

Monte Carlo simulation.  Monte Carlo simulations that include TWTT measurements 

lead to the same conclusion as the non-TWTT case. 

The original intent was to prove that covariance analysis is sufficient to analyze 

results by comparing covariance analysis results to Monte Carlo simulations.  If single 
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runs are proved adequate, the massive computational time of numerous Monte Carlo runs 

can be avoided. 

4.2.2 Root Mean Square Results 

As explained in Section 3.6, the simulation results are provided in terms of Root 

Mean Square (RMS) positioning error.  The RMS positioning error allows the results to 

be condensed into a single number, providing a quick and simple method for comparing 

trade study results. 

RMS values are normally calculated from a collection of measurement data 

gathered from numerous simulations runs, such as a Monte Carlo simulation.  Another 

method is to use the filter-computed covariance values calculated from a single 

simulation run, as opposed to the actual measurement data.  As the number of Monte 

Carlo simulation runs approaches infinity, the RMS values calculated by using 

measurement data should equal the RMS values calculated by using covariance values.  

The filter-calculated covariance values will be the same for each simulation run, so 

Monte Carlo simulations are not required when using covariance values to calculate RMS 

values. 

Two scenarios were selected to compare measurement-calculated RMS values 

with filter covariance-calculated RMS values.  An ovenized crystal clock was assigned to 

the GEO satellite receiver while using two different GPS receiver sensitivity settings.  

The three-dimensional RMS results are displayed in Table 4.1.  These two scenarios use 

GPS ephemeris data from January 1, 2006 and the complex GPS receiver model with 

complex antenna gain pattern data. These settings are the default for all the simulations 

unless otherwise specified. 
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Table 4.1: Comparison of Monte Carlo Simulation and Single Run Simulation, no TWTT 

  
Standard Sensitivity 
(32 dB-Hz cutoff) 

High Sensitivity     
(12 dB-Hz cutoff) 

Monte Carlo 3D RMS 83.90 3.88 
Single Run 3D RMS 76.09 3.83 

      
% Difference 10.26% 1.31% 

 

Plotting the 3D position RMS values over time provides another useful way of 

comparing the Monte Carlo measurement values to the filter covariance values from a 

single run.  If the filter is properly estimating the position of the GEO satellite, the filter-

computed covariance 3D position RMS over time curve on the plot should match that of 

the Monte Carlo simulation.  A plot of the 3D position RMS over time is shown in Figure 

4.3. 
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Figure 4.3: 3D Position RMS Over Time – Standard Sensitivity, no TWTT 

The worst-case scenario is a standard sensitivity receiver with no TWTT 

measurements, displayed in Figure 4.3.  In the simulation, the standard sensitivity 

receiver tracks between zero and four GPS satellites during a 24 hour period (see 

Appendix A), resulting in poor measurement precision.  The lack of GPS signals is 

apparent when looking at the 3D RMS plot, where the measurements curve differs from 

the filter-computed covariance curve. 

Since few measurements are available to the filter, it must rely heavily on 

estimating the satellite position.  The covariance will predict how the position, velocity, 

and clock errors will propagate, but the lack of measurements will prevent the filter from 
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making consistent corrections to its estimation.  This is what causes the disparity between 

the Monte Carlo results and the covariance results. 

Since the Monte Carlo measurements closely match the filter-computed 

covariance values and carry the same trends, the model can be considered valid.  The 

Monte Carlo measurement results can now be replaced with the covariance 

measurements from a single simulation run, producing enormous savings in 

computational time. 

 

4.3 Baseline Results 

A series of six scenarios were selected as the baseline for comparing against the 

trade study results.  In the baseline analysis, an ovenized crystal clock is used for the 

GEO satellite GPS receiver and a Rubidium clock is used for the TWTT reference clock.  

All six GPS receiver sensitivity levels are used while switching the TWTT measurements 

on and off, resulting in twelve data sets.  The GPS receiver sensitivity levels dictate the 

C/N0 cutoff for the receiver’s ability to detect and use a GPS signal, as well as the 

associated pseudorange error.  The sensitivity levels range from 32 dB-Hz (standard) to 7 

dB-Hz (ultra high) using 5 dB-Hz increments. 

4.3.1 Plotting the Results 

The plotted data provides a glimpse inside the simulation mechanics and helps to 

show that the model is valid.  Certain trends are visible that point to tangible reasons for 

the nature of the data. 

In situations where the receiver has a lower sensitivity, there will be periods of 

time when no GPS satellites are visible and the filter will need to rely completely upon its 
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process model estimating the state of the satellite.  Over time, errors will propagate and 

the filter’s prediction will diverge from the true position, as will the filter’s confidence in 

the accuracy of the predicted position values.  When a satellite comes into view, the filter 

will once again receive measurement data and can finally reduce the uncertainty.  In the 

case of clock bias error, these rapid corrections are plainly visible in Figure 4.4.  The blue 

line in Figure 4.4 represents the difference between the filter-predicted state and the true 

state, while the red line represents the filter-computed covariance.  If the filter is accurate, 

the measurement values should stay within the boundaries of the covariance. 
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Figure 4.4: GEO Satellite Clock Bias Error Filter Covariance for a Single Run (Standard Sensitivity 

with no TWTT Measurements) 
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Figure 4.5: Visible GPS Satellites from GEO Satellite (Standard Sensitivity) 

In Figure 4.4, the rapid covariance growth is directly linked to the periods where 

zero GPS satellites are visible.  The filter-computed covariance of clock bias error grows 

when there are no available measurements, since the filter is continually losing 

confidence in the prediction.  When measurements become available, the filter can 

immediately correct the prediction of the clock state, shrinking the covariance drastically 

as the filter is once again confident in the predicted clock state. 

When TWTT measurements are included, the filter never relies solely on 

prediction for the clock state.  The reference clock provides bias, drift, and drift rate 

information to the filter, allowing it to more accurately predict the velocity and position 

states.  Figure 4.6 is based on exactly the same GPS satellite visibility as Figure 4.4, but 
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now includes TWTT measurements.  The drastic jumps in the covariance disappear since 

the filter never experiences clock measurement blackouts. 

2 4 6 8 10 12 14 16 18 20 22

-100

-50

0

50

100

GEO Clock Bias Error

Time (hours)

C
lo

ck
 E

rro
r (

m
et

er
s)

 

 
Filter-Computed Covariance

 
Figure 4.6: GEO Satellite Clock Bias Error Filter Covariance for a Single Run (Standard Sensitivity 

with TWTT Measurements Included) 

 
When using a higher sensitivity receiver, the filter is able to more adequately 

correct the estimated state.  Figure 4.7 illustrates the clock bias error of a medium 

sensitivity receiver with TWTT measurements turned on and off.  The higher sensitivity 

receiver is able to track more GPS signals and allow the filter to predict the clock state 

more accurately than the receiver depicted in Figure 4.6.  When TWTT measurements are 

included, the clock state prediction improves further and the covariance is smaller than 

the non-TWTT case. 
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Figure 4.7: GEO Satellite Clock Bias Error with TWTT Turned Off (top) and On (bottom) (Medium 

Sensitivity) 

 

A similar outcome is also apparent when looking at the position error.  For 

example, the X-direction position error is shown in Figure 4.8. 
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Figure 4.8: Geo Satellite X-Direction Position Error with TWTT Turned Off (top) and On (bottom) 
(Medium Sensitivity) 
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Plotting the simulation results can explain behaviors that would naturally be 

expected in the real-world system.  By visually verifying these events in the data, the 

simulation model can be trusted with greater confidence. 

4.3.2 Position Error 

The compiled RMS position error data for the baseline case is listed in Table 4.2.  

The X, Y, and Z position errors are expressed as RMS values over time.  For example, all 

the filter covariance X values over the entire simulation run time are squared and 

summed. This value is divided by the entire number of measurement epochs to calculate 

the mean of the squared values.  The square root of the mean value results in the RMS 

value, condensing the entire simulation run into a single number for evaluation.  After the 

initial state is declared, the simulation runs for 23 hours and 45 minutes with 60-second 

measurement intervals, resulting in 1,426 measurement values. 

The three-dimensional RMS value, labeled 3D in Table 4.2, is calculated in a 

slightly different manner.  When using Monte Carlo measurement data, the RMS values 

are calculated to find the three-dimensional position error for each measurement epoch 

(refer to Section 3.6).  When using filter covariance values to calculate a three-

dimensional position error, a root sum square (RSS) is used instead of the RMS (see 

Equation 3.43).  All X, Y, and Z values are squared and summed and then the square root 

is calculated.  The result is 1,426 RSS values that represent the three-dimensional 

position error for each epoch.  In order to reduce this data into a single number for 

comparison, the RMS value of all the RSS values is calculated, providing the single 

number to describe the three-dimensional position error. 
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Table 4.2: Simulation Baseline Results – RMS Position Error Values per Reciever Sensitivities 
RMS Position Error (m) GPS 

Receiver 
Sensitivity 

Cutoff 
(dB-Hz) 

RMS Position 
Type no TWTT Rb TWTT 

% Decrease in 
Position Error 

by Using TWTT 
3D 76.09 60.32 20.73% 

X (Radial) 66.44 55.49 16.48% 
Y (In-track) 27.69 17.60 36.43% 

Standard 32 

Z (Cross-track) 24.68 15.78 36.06% 
3D 31.87 24.10 24.36% 

X (Radial) 30.19 22.32 26.07% 
Y (In-track) 8.10 6.97 14.02% 

Standard 
Plus 27 

Z (Cross-track) 6.18 5.85 5.40% 
3D 11.34 7.71 32.04% 

X (Radial) 10.54 6.56 37.76% 
Y (In-track) 3.11 2.97 4.41% 

Medium 22 

Z (Cross-track) 2.80 2.74 1.97% 
3D 6.32 4.08 35.43% 

X (Radial) 5.87 3.38 42.49% 
Y (In-track) 1.70 1.66 2.38% 

Medium 
Plus 17 

Z (Cross-track) 1.60 1.58 1.09% 
3D 3.83 2.40 37.43% 

X (Radial) 3.56 1.95 45.15% 
Y (In-track) 1.02 1.00 1.65% 

High 12 

Z (Cross-track) 0.97 0.96 0.83% 
3D 2.36 1.48 37.55% 

X (Radial) 2.19 1.18 46.14% 
Y (In-track) 0.65 0.64 1.18% 

Ultra High 7 

Z (Cross-track) 0.63 0.62 0.68% 
 

 

4.4 Trade Study 1:  Ephemeris Date 

To ensure the simulation does not depend upon the ephemeris data for a specific 

day, nine additional days were selected for comparison. One day was selected out of each 

year from 1997 to 2006, providing a comprehensive evaluation pool.  Each simulation 

was identical, other than the different ephemeris date, and used the worst-case scenario of 

a standard sensitivity receiver with no TWTT measurements.  The results of the study are 

listed in Table 4.3.   
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Table 4.3: Various Dates of Ephemeris and Resulting RMS Position Errors 

 

 For additional insight, the mean value and standard deviation were calculated 

across all ten ephemeris dates, given in Table 4.4. 

Table 4.4: RMS Position Error Measurement Mean and Standard Deviation Across all Ten 
Ephemeris Dates 

 

The three-dimensional RMS position error mean value is approximately one 

meter greater than the value for the default January 1, 2006 ephemeris date.  This ensures 

that the 2006 date will be a good representation of the expected values for the simulation 

at any given time.  The 3D RMS standard deviation is less than six meters which is well 

within acceptable boundaries for instilling confidence in the simulation model. 
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Trends in the GPS satellite visibility provide another look at the simulation 

model’s validity.  Ephemeris data from each of the ten dates produced very similar 

visibility trends, as they all vary from zero to four with an average of approximately two.  

Samples of GPS satellite visibility plots are located in Figure 4.9.  For the case of a 

standard sensitivity receiver and no TWTT measurements, the number of visible satellites 

ranged from zero to four.  The only exception was when five GPS satellites were visible 

for a brief period while using the 2003 ephemeris data. This was the only time more than 

four satellites were visible.   

By examining the RMS position error values and visible GPS satellite plots, it is 

apparent that differing ephemeris dates do not have a significant impact on the results of 

the simulation.  The simulation is accurate and consistent for any ephemeris data that is 

used. 

 
Figure 4.9: GPS Satellite Visibility Plots for a GEO Satellite Using Four Different Ephemeris Dates 
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4.5 Trade Study 2:  GPS Receiver Models 

The simulation contains a simple and a complex GPS receiver models.  The 

simple reciever model is strictly concerned with satellite look angles and does not 

calculate signal path loss, varying degrees of pseudorange measurement noise error, or 

varying gain patterns.  If the GEO satellite is within a GPS satellite’s main beam field of 

view and is not obscured by the Earth, the receiver is assumed to be able to gather a 

pseudorange measurement.  This measurement is simply the vector distance between the 

two satellites with the addition of white, Gaussian measurement noise with a five-meter 

standard deviation. 

The complex receiver model calculates the received signal strength taking into 

account transmit and receive antenna gain patterns and path loss, as described in Section 

3.4.3.  The received signal strength dictates whether or not a pseudorange measurement is 

available, and if so, measurement noise error, as described in Section 3.4.3. 

The simple GPS receiver model is dependent upon the look angle of the GPS 

satellite.  A smaller look angle will limit the number of satellite that the GEO satellite can 

track simultaneously, while a larger look angle will allow the GEO satellite to track more 

GPS satellites.  The first part of this trade study examines varying the look angle of the 

GPS satellites and the results are seen in Table 4.5.  The 42.6˚ angle is a common 

representation of the GPS Block II/IIA main beam, as seen in [1] and others.  The 38˚ and 

120˚ angles were chosen to mimic the Block IIR main beam and Block IIR UHF 

crosslink beam as shown in [20].  The 50˚ angle was chosen arbitrarily to represent a 

modest increase over the commonplace 42.6˚ Block II/IIA main beam. 
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Table 4.5: Simple Model RMS Position Error Results with Pseudorange Measurement Noise Error 
Standard Deviation of 5 meters 

 

When comparing with the complex GPS receiver model, there are similarities 

between the simple model’s 42.6˚ look angle and the complex model’s standard 

sensitivity level.  The 120˚ look angle scenario is also similar to the medium plus 

sensitivity level.  These traits are listed in Table 4.6. 

Table 4.6: Comparison of Simple and Complex GPS Receiver Model RMS Position Error Values 

 

The approximated Block II/IIA antenna main beam angle in the simple model 

produces results very similar to the standard sensitivity level in the complex model.  This 

suggests that the simple model might be sufficient for examining scenarios that involve 

nominal equipment and values, where it is safe to assume all pseudorange measurement 

noise errors follow a standard deviation of five meters.  Specialized hardware with higher 
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sensitivity levels will most likely require the complex model to represent the system.  

Still, the fact that the standard case shows correlation between the simple and the 

complex models further proves that the simulation is reliable. 

The second part of this trade study explores various pseudorange measurement 

noise error standard deviation values and their effect on three-dimensional positioning 

accuracy for the simple receiver model.  The pseudorange measurement noise error 

standard deviation is varied between 1, 2, 3, 5, and 7 meters, the results being listed in 

Table 4.7. 

Table 4.7: Simple Model RMS Position Error Results with Varying Pseudorange Measurement Noise 
Error Standard Deviations and GPS Look Angle of 42.6˚ 

 

There are distinct similarities between the 7 meter standard deviation value in the 

simple model and the standard sensitivity level in the complex model.  The correlation is 

shown in Table 4.8. 
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Table 4.8: Comparison of Simple and Complex GPS Receiver Models Based on Pseudorange Error 

 

The standard sensitivity level in the complex GPS receiver model limits the 

number of GPS satellites that are visible to the GEO satellite.  The few satellites that are 

available will most likely be large look angles where the antenna gain patterns will 

provide the least amount of signal strength to the receiver.  Low received signal strength 

will incur a higher pseudorange measurement noise error.  For the complex model, the 

pseudorange measurement noise error is 15 meters at the receiver’s signal strength cutoff 

boundary (i.e., the lowest signal power that can provide a pseudorange measurement).  It 

makes sense that a 7-meter pseudorange error value would best represent the standard 

sensitivity level when using the simple model. 

 

4.6 Trade Study 3:  Gain Pattern Models 

As stated in Section 3.4.3, there are two GPS antenna gain pattern models 

available for the complex GPS receiver model, taken from two different sources.  The 

simple antenna model provides gain pattern data from nadir to 43˚, while the complex 

model provides data from 0˚ to 180˚ off-boresight.  Both gain pattern models replicate the 

GPS Block II/IIA transmit antenna.  The primary and secondary lobes are contained in 
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the 0˚-43˚ portion of the transmit beam (refer to Figure 3.4).  Additional lobes exist at 

higher angles, but the gain is very small.  Because the gains are so small at high angles, 

the complex gain pattern becomes more beneficial as the GPS receiver sensitivity 

increases.  Table 4.9 displays the results of this trade study. 

Table 4.9: Comparison of Simple and Complex GPS Gain Pattern Models and Resulting RMS 
Position Error Values 

 

As mentioned previously, the complex gain pattern is required when the GPS 

receiver sensitivity increases.  For the standard sensitivity, where the small gains that 

exist at high look angles cannot be utilized, the simple gain pattern will most likely be 

sufficient for accurate simulation results. 

When using a “standard plus” sensitivity level, the simple gain pattern appears to 

be more accurate than the complex gain pattern.  This is most likely due to slight 

differences in the lobe sizes and positions between the two gain pattern models.  The 
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minimum gain value between the primary and secondary lobes is different by a few 

degrees between the two models, which could cause the accuracy of the simple gain 

pattern model to be exaggerated in this particular situation. 

 

4.7 Trade Study 4:  Clock Type Selection 

Three types of clocks are available in the simulation model.  An ovenized crystal 

clock represents an inexpensive, commonly-used clock that would be onboard most 

common satellites.  The Cesium and Rubidium atomic clocks represent hardware that 

provides much greater precision and accuracy in time measurements.  GPS time is 

governed by high-quality atomic clocks like the Rubidium clock in this model. 

This trade study examines the impact of atomic clocks on three-dimensional 

position error.  Because pseudorange measurement accuracy is bound to the quality of the 

clock involved, it is expected that higher-accuracy clocks will provide smaller position 

errors.  The results of this trade study are listed in Table 4.10. 

Table 4.10: Comparison of Clock Types and Resulting 3D RMS Position Error Values (in meters) 

GPS Receiver Sensitivity GEO 
Clock 

TWTT Ref 
Clock Standard    

(32 dB-Hz)
Standard+   
(27 dB-Hz)

Medium    
(22 dB-Hz)

Medium+   
(17 dB-Hz)

High       
(12 dB-Hz) 

Ultra High  
(7 dB-Hz) 

Crystal None 76.09 31.87 11.34 6.318 3.830 2.363 
Crystal Cesium 60.33 24.12 7.722 4.103 2.431 1.518 
Crystal Rubidium 60.32 24.10 7.707 4.080 2.396 1.476 
Cesium None 60.37 24.16 7.772 4.135 2.447 1.518 
Cesium Cesium 60.31 24.10 7.702 4.080 2.400 1.482 
Cesium Rubidium 60.31 24.09 7.697 4.071 2.386 1.464 

Rubidium None 60.36 24.14 7.757 4.112 2.413 1.476 
Rubidium Cesium 60.30 24.09 7.696 4.070 2.385 1.461 
Rubidium Rubidium 60.30 24.09 7.694 4.067 2.381 1.456 
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As expected, the inclusion of TWTT measurements provides smaller position 

errors, as does a more accurate clock.  As the sensitivity of the GPS receiver increases, 

there is a smaller percent decrease in position error.  With the high sensitivity receiver, 

there are enough quality measurements to drastically reduce the clock error, so the 

addition of TWTT measurements is less significant.  The percent decrease in 3D RMS 

position error per scenario is listed in Table 4.11. 

Table 4.11: Percent Decrease in 3D RMS Position Error Compared to Scenario Using Ovenized 
Crystal GEO Satellite Clock, no TWTT, Standard Sensitivity Receiver 

GPS Receiver Sensitivity 
GEO 
Clock 

TWTT Ref 
Clock Standard    

(32 dB-Hz)
Standard+   
(27 dB-Hz)

Medium    
(22 dB-Hz)

Medium+   
(17 dB-Hz)

High       
(12 dB-Hz) 

Ultra High  
(7 dB-Hz) 

Crystal None             
Crystal Cesium 20.71% 24.31% 31.91% 35.06% 36.54% 35.77% 
Crystal Rubidium 20.73% 24.36% 32.04% 35.43% 37.43% 37.55% 
Cesium None 20.66% 24.19% 31.47% 34.55% 36.12% 35.75% 
Cesium Cesium 20.74% 24.38% 32.08% 35.43% 37.34% 37.28% 
Cesium Rubidium 20.74% 24.39% 32.13% 35.57% 37.70% 38.04% 

Rubidium None 20.68% 24.23% 31.60% 34.92% 37.00% 37.54% 
Rubidium Cesium 20.75% 24.40% 32.14% 35.58% 37.74% 38.16% 
Rubidium Rubidium 20.75% 24.40% 32.15% 35.62% 37.83% 38.37% 

 

It is interesting to note that the inclusion of an atomic clock makes a remarkable 

impact on the position error.  As long as there is at least one atomic clock involved in the 

navigation process, the highest accuracy is achieved.  For example, when a Rubidium 

TWTT reference clock is introduced to an ovenized crystal clock on the GEO satellite, 

the effect is the same as having a single Rubidium clock on the GEO satellite, or a 

Rubidium clock in both locations.  The difference between these three scenarios is on the 

order of millimeters of three-dimensional position error.  This means that a cheap, simple, 

durable clock can be placed on a satellite in a harsh unstable environment, while the 
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expensive, complex, fragile atomic clock can reside at a TWTT reference clock station on 

Earth in a controlled environment. 

 

4.8 Trade Study 5:  TWTT Measurement Noise Error 

TWTT measurements are subject to measurement noise error, just as the 

pseudorange measurements are.  It is expected that as technology advances, TWTT 

measurements will become more accurate, lowering the amount of error.  This trade 

study examines the impact of varying TWTT measurement noise error, ranging between 

standard deviation values of 10, 3, 0.3, 0.03, and 0.003 meters.  Table 4.12 displays the 

results of varying the TWTT measurement noise error standard deviation.  Gaps in the 

table exist because some scenarios were deemed of lesser importance and eliminated to 

save computation time. 

Table 4.12: Comparison of Various TWTT Measurement Noise Error Standard Deviation Values 
and Resulting 3D RMS Position Errors (in meters) 
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Varying the TWTT measurement error has a small effect on the position accuracy 

in the simulation.  When the 3D RMS position error is 24 and 60 meters, having a TWTT 

measurement accuracy greater than 3 meters will gain 50-60 centimeters of position 

accuracy.  When the position error is 1-7 meters, increasing the TWTT measurement 

accuracy beyond 3 meters gains 0-30 centimeters. 

Overall, the accuracy of the TWTT measurements is not extremely critical. In 

some cases it will provide half a meter of increased accuracy, but it is usually less than 

that.  

 

4.9 Additional TWTT Study – TWTT Reference Clock Locked to GPS Time 

The investigation of the impact of TWTT measurements on GPS navigation led to 

another scenario concept that involved a reference clock that is synchronized with GPS 

time.  If the reference clock could exactly match GPS time, then the receiver clock error 

could be essentially removed from the pseudorange measurement using the TWTT 

measurement.  In this case, the TWTT reference clock errors are not estimated by the 

Kalman filter (since they are zero), as they were in the previous cases.  Using the TWTT 

with the reference clock synchronized to GPS time significantly reduced the position 

error, as shown in Table 4.13.  The use of TWTT in this mode resulted in 60-70% 

improvement in positioning accuracy, depending on the receiver sensitivity. 
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Table 4.13: Comparison of 3D Position RMS Error (meters) When Using a TWTT Reference Clock 
that is Synchronized with GPS Time 

GPS Receiver Sensitivity 
GEO 
Clock TWTT Standard   

(32 dB-
Hz) 

Standard+   
(27 dB-

Hz) 

Medium   
(22 dB-

Hz) 

Medium+   
(17 dB-

Hz) 

High      
(12 dB-

Hz) 

Ultra 
High      

(7 dB-
Hz) 

Crystal None 76.09 31.86 11.34 6.32 3.83 2.36 
Rubidium None 60.36 24.14 7.76 4.11 2.41 1.48 

Crystal Rubidium 60.32 24.10 7.71 4.08 2.40 1.48 
Rubidium Rubidium 60.30 24.09 7.69 4.07 2.38 1.46 

Crystal GPS 
Time 22.93 9.01 4.07 2.33 1.44 0.95 

 
 

4.10 Summary 

This chapter outlined the simulation results and provides analysis of the data.  

The baseline results provide the fundamental information used to compare against each 

trade study.  The trade studies included using ephemeris data from different days, using a 

simple and complex GPS receiver model, using a simple and complex GPS antenna gain 

pattern, varying the clock types found on the GEO satellite and TWTT reference station, 

and adjusting the TWTT measurement error. 

The results indicate that changing the ephemeris date has no effect on the 

simulation data, so the model is valid for any day.  The simple GPS model and GPS gain 

pattern proved useful for low sensitivity receivers, but the complex model and gain 

pattern are required for mid- to high-sensitivity receivers.  As long as a single high-

accuracy atomic clock is available somewhere in the system, either on the satellite or 

supplied via TWTT measurements, the position accuracy is the same.  Having a TWTT 

measurement error standard deviation smaller than 3 meters had little effect on the three-

dimensional position error of the satellite.  A value of 30 centimeters proved to be as 

beneficial as a value of 3 centimeters.  Most importantly, providing a TWTT reference 
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clock which is slaved to GPS time offers radical position accuracy enhancements, far 

beyond what is achievable with current GPS receivers alone. 

Chapter 5 will provide summary conclusions and recommendations for future 

research in this area. 
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5 Conclusions and Recommendations 

 

5.1 Significance of Research 

The goal of this research was to evaluate the benefits of Two-Way Time Transfer 

measurements when used to augment GPS navigation at very high altitudes like 

geostationary orbit.  At this altitude, the receiver is above the GPS satellite constellation, 

a location where the GPS system was not designed to provide navigation information.  

The satellite geometry at GEO severely limits the number of usable GPS satellites, since 

the Earth occludes most of the GPS signals from the GEO satellite.  In order to produce 

navigation information, a minimum of four satellites are needed to solve for the three 

dimensional position and clock error.  When less than four satellites are available, the 

clock error cannot be resolved and the information provided is not very useful. 

TWTT provides a method for resolving the clock error when less than four GPS 

satellites are visible.  TWTT is a technique that involves simultaneously exchanging 

signals between two or more clocks and is one of the most accurate ways to compare 

clocks.  With TWTT measurements, the clock error between the GPS satellite transmitter 

and the GEO satellite receiver can be resolved, allowing useful information to be gleaned 

from any number of visible satellites, even if it is less than four. 

This capability allows any standard GPS receiver to operate effectively on a GEO 

satellite with reasonable accuracy.  Accurate GPS navigation in high-altitude orbits 

provides numerous opportunities, such as automated station-keeping in a GEO orbit.  

Also, by substituting automation and removing the ground-based ranging systems, the 

cost reduction incurred by reducing ground support is considerable. 
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To summarize the key results into a single figure, five scenarios were selected:  1) 

Ovenized crystal GEO clock, no TWTT, 2) Rubidium GEO clock, no TWTT, 3) 

Ovenized crystal GEO clock, TWTT to Rubidium reference, 4) Rubidium GEO clock, 

TWTT to Rubidium reference, 5) Ovenized crystal GEO clock, TWTT to clock 

synchronized to GPS time.  Each of these scenarios were run.  The three-dimensional 

Root Mean Square (3D RMS) position error for each simulation run is provided in Figure 

5.1. 
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Figure 5.1: Keystone Plot – 3D RMS Position Error vs. GPS Receiver Sensitivity Levels and Clock 

Configurations 
 
This is the key plot that captures the essence of this thesis research, as it clearly 

describes the benefit of including TWTT measurements with GPS pseuodrange 

measurements for navigation.  Introducing an atomic clock provides some positioning 

improvement, but the breakthrough occurs when the TWTT reference clock is 
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synchronized with GPS time, offering a 60-70% reduction in three-dimensional position 

error. 

The precise clock does not necessarily need to reside on the satellite, but rather 

can be placed on Earth where it can be better protected and maintained.  Also, if the 

precise clock fails, the on-orbit satellite is not rendered inoperable.  Ovenized crystal 

clocks are less complex and more robust, making them a better candidate for space flight, 

further emphasizing the importance of keeping the precise atomic clock on the ground. 

The idea of using TWTT measurements in GPS navigation has been explored in 

the original user environment on Earth, and provided exceptional accuracy 

improvements.  By now addressing TWTT measurements used in GPS navigation in 

high-altitude orbits, such as GEO, the accuracy improvements are even more remarkable. 

 

5.2 Trade Studies 

A number of additional trade studies were performed using this simulation.  

Results are summarized in the sections that follow. 

5.2.1 Baseline Results 

The baseline results are the primary research results and are compared with the 

trade studies.  These primary results consist of six GPS receiver sensitivity levels that are 

used with and without TWTT measurements.  The GEO satellite clock is an ovenized 

crystal clock, the TWTT reference clock is a Rubidium clock, and the TWTT 

measurement error standard deviation is 0.3 meters. 

It is apparent that increasing the sensitivity level of the GPS receiver provides the 

greatest improvement in measurement accuracy.  Using a single GPS receiver with a 
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predefined sensitivity level, the inclusion of TWTT measurements does allow for 

significant positioning accuracy improvements that would otherwise not be available.  

This improvement ranges from 21% (when using a standard sensitivity receiver) to 38% 

(when using an ultra high sensitivity receiver). 

5.2.2 Trade Study 1:  Ephemeris Date 

To ensure that the simulation model does not depend on ephemeris data, ten 

separate days were tested.  The same scenario was run for each day and the results were 

examined to find similar trends that would suggest correlation. 

The mean 3D RMS position error value is 77.14 meters, while the standard 

deviation is 5.72 meters.  The standard deviation is less than 10% of the mean value, 

insinuating that there are no large anomalies when varying the ephemeris data.  The GPS 

satellite visibility plots for each ephemeris date are very similar, each providing the same 

general level of satellite coverage to the GEO satellite.  These findings indicate that the 

output of the simulation model will not be corrupted by slight differences in ephemeris 

data, thus the model is valid for any day. 

5.2.3 Trade Study 2:  GPS Receiver Models 

The simulation model contains two types of GPS receiver models.  The first type 

is a simple model that only examines the maximum look angle of the GPS satellite and 

the cutoff angle between the GPS satellite and the Earth that obscures the GEO satellite.  

The simple model uses a constant pseudorange measurement noise error standard 

deviation value.  The second type is a complex model that accounts for look angles, gain 
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patterns, signal strengths, and varying pseudorange measurement error standard deviation 

values. 

The first part of this trade study examines the effect of GPS satellite look angle on 

the GEO satellite 3D RMS position error.  Increasing the GPS satellite look angle has a 

similar effect as increasing the GPS receiver sensitivity level in the baseline results.  The 

42.6˚ look angle is comparable to the standard sensitivity level, while the 120˚ look angle 

is comparable to the medium plus sensitivity level. 

The second part of this trade study examines the effect of pseudorange 

measurement noise error standard deviation on the GEO satellite 3D RMS position error.  

A standard deviation value of 7 meters is comparable to the standard sensitivity level in 

the baseline results. 

The simple GPS receiver model does not have the precision of the complex 

model, but it is still relatively accurate.  Using a GPS satellite look angle of 42.6˚ and a 

pseudorange error of 7 meters, the simple model performs very similarly to the complex 

model when using an ovenized crystal clock on the GEO satellite, with and without a 

Rubidium TWTT reference clock.  This is an additional step toward validating the 

complex GPS receiver model, which provides the most realistic results. 

5.2.4 Trade Study 3:  Gain Pattern Models 

The complex GPS receiver model uses either a simple or a complex GPS satellite 

antenna gain pattern.  This trade study examines the impact of various GPS satellite 

antenna gain patterns on the GEO satellite 3D RMS position error. 

When using a lower sensitivity GPS receiver, the difference in 3D RMS position 

error values between the simple and complex GPS satellite antenna gain pattern models is 
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the largest, but the percent difference is the smallest.  The 3D RMS position error for a 

standard sensitivity receiver will differ by 9.25 meters, which is 12% of the 3D RMS 

position error when using the complex antenna gain pattern.  The reverse is true for the 

higher sensitivity receivers.  The 3D RMS position error for an ultra high sensitivity 

receiver will differ by only 2.37 meters, which is a 100% increase changing from the 

complex antenna gain pattern model to the simple model.  This trade study shows that the 

simple GPS satellite antenna gain pattern model is accurate and correlates well with the 

complex model, indicating the complex model is reliable and accurate while also 

providing more realistic results. 

5.2.5 Trade Study 4:  Clock Type Selection 

There are three different types of clock available in the simulation model for use 

in the GEO satellite and the TWTT reference station.  This trade study examines how 

varying the clock type in both locations affects the GEO satellite 3D RMS position error. 

It is immediately apparent that whenever an atomic clock is introduced, the 

position results for a particular GPS receiver sensitivity level reach maximum accuracy.  

If a Rubidium clock is placed on the GEO satellite and no TWTT measurements are used, 

the end result is the same as having an ovenized crystal clock on the GEO satellite and a 

Rubidium clock as the TWTT reference.  This trade study suggests that TWTT will allow 

any satellite to benefit from an atomic clock without the burden of carrying one on orbit. 

5.2.6 Trade Study 5:  TWTT Measurement Noise Error 

This trade study examines the effects of altering the TWTT measurement error 

standard deviation value on the GEO satellite 3D RMS position error.  The default 
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standard deviation value throughout the simulation runs is 0.3 meters, which is 

representative of a sophisticated TWTT setup. 

The TWTT measurement accuracy does not appear to have much effect on the 3D 

RMS position error of a GEO satellite.  When using a standard sensitivity GPS receiver, 

changing the TWTT measurement error standard deviation from 10 meters to 3 meters 

gains approximately 3 meters of position accuracy, or 4%.  When using a higher 

sensitivity receiver, the 3D RMS position accuracy improvement is on the order of 

centimeters.  This trade study indicates that a TWTT measurement error standard 

deviation value smaller than 0.3 meters gains relatively nothing. 

5.2.7 Additional TWTT Study – Reference Clock Locked to GPS Time 

This additional study addressed a TWTT scenario where the reference clock is set 

to match GPS time.  This will allow the GPS receiver to maintain the exact time as the 

GPS satellites.  As a result, the pseudorange measurements will have all clock error 

removed, allowing the calculation of a three-dimensional position with only three 

satellites, since clock error no longer needs to be solved.  This configuration will allow 

more than three times the amount of positioning accuracy as compared to the scenario 

using an atomic clock in the TWTT system. 

5.2.8 Overall Results 

The first three trade studies provide key information that allows a deeper 

understanding of the simulation model.  By varying parameters and exploring the results, 

the model can be validated, ensuring that the output is reasonable and accurate.  The 

mechanics of the simple GPS receiver model are relatively easy to test and confirm, so 
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using the simple model to help validate the complex model is a natural step towards a 

reliable simulation. 

The last two trade studies examine the concept of aiding GPS pseudorange 

positioning with TWTT, and explore the benefits and limitations of such a system.  By 

testing different clock configurations and TWTT measurement noise error values it is 

confirmed that a single atomic clock placed anywhere in the system can provide an 

increase in positioning accuracy, anywhere from 21-38%.  By creating a reference clock 

that is synchronized with GPS time, the positioning accuracy increases by 70%. 

 

5.3 Recommendations for Future Research 

5.3.1 Improve Simulation Fidelity 

There are many aspects of the simulation model that have the potential for 

enhancement.  This research was focused on the accuracy improvements that TWTT 

measurements offer, not on complicated orbital dynamics, sophisticated signal 

transmission and reception mechanics, or the inclusion of all possible error sources.  The 

following paragraphs describe portions of the simulation model that could be improved to 

include many of the items discussed above. 

The simulation could be enhanced to model each GPS satellite appropriately by 

using specific information on the individual Block of GPS satellite used by each PRN.  

Currently, the simulation uses the same transmit antenna gain pattern and transmit power 

for all GPS satellites.  Obviously, every single GPS satellite in orbit is not a Block II/IIA 

variant, so the simulation model should more accurately represent all of the current 

satellite variants in orbit.  Some of the newer GPS satellites provide higher transmit 



 103

power, which could provide greater three-dimensional positioning accuracy than this 

simulation indicates. 

Similarly, the simulation should model the actual GPS receiver that is built into 

the GEO satellite.  The simulation currently uses a low-cost, off-the-shelf GPS receiver 

patch antenna that provides 4dB gain or less.  If the GEO satellite is using a higher-

quality antenna that provides higher receiver gain, the results would also provide a 

greater positioning accuracy than indicated in this research. 

A sophisticated propagation model (not just simple two-body dynamics) for the 

GEO satellite orbit truth propagation and filter propagation should be developed.  The 

simple propagator does not account for perturbations in the Earth’s gravity field, the 

gravity of the sun and moon, solar wind pressure, atmospheric drag, or any other high-

order phenomenon.  These effects could alter the results of the simulation, and should be 

modeled for complete accuracy. 

5.3.2 Investigate a Non-standard GPS Receiver Antenna on the GEO Satellite 

This simulation assumes that the GPS receiver points directly to the center of the 

Earth and has maximum gain at a zero degree look angle (boresight).  From GEO, the 

Earth blocks most of the GPS satellites from view, so all visible GPS satellites will be at 

an angle from the GEO satellite.  It is intuitive that the GPS receiver antenna should not 

have maximum gain that points toward the center of the earth if the received signals will 

come from an angle.  Instead, the GEO satellite GPS receiver antenna should have 

maximum gain at an angle that will coincide with the direction of the visible GPS 

satellites. 
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A GPS satellite transmit antenna uses a gain pattern with maximum gain at 

approximately 10˚, providing the maximum signal power to the limb of the Earth where 

atmospheric loss will be the greatest for a ground user.  It is recommended that the GEO 

satellite GPS receiver have a similar gain pattern, allowing the maximum signal power 

reception to be in line with the visible GPS satellites.  By boosting received signal power 

in this manner, the pseudorange measurement noise errors will be reduced, providing 

more accurate navigation information. 
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Appendix A – GPS Satellite Visibility Plots 
 

 
Figure A.1: GPS Satellite Visibility from GEO for Standard Sensitivity Reciever (32 dB-Hz cutoff) 

 

 
Figure A.2: GPS Satellite Visibility from GEO for Standard Plus Sensitivity Reciever (27 dB-Hz 

cutoff) 



 106

 

 
Figure A.3: GPS Satellite Visibility from GEO for Medium Sensitivity Reciever (22 dB-Hz cutoff) 

 

 
Figure A.4: GPS Satellite Visibility from GEO for Standard Plus Sensitivity Reciever (17 dB-Hz 

cutoff) 
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Figure A.5: GPS Satellite Visibility from GEO for High Sensitivity Reciever (12 dB-Hz cutoff) 

 

 
Figure A.6: GPS Satellite Visibility from GEO for Ultra High Sensitivity Reciever (7 dB-Hz cutoff) 
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